十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
Python数据分析必备的第三方库:
创新互联建站是一家专业提供婺城企业网站建设,专注与成都网站建设、成都做网站、H5高端网站建设、小程序制作等业务。10年已为婺城众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。
1、Pandas
Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。
Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。
Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。
2、Numpy
Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。
Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。
3、Matplotlib
Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。
Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。
Matplotlib是基于Numpy的一套Python包,这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。
4、SciPy
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。
SciPy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。
5、Keras
Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。
6、Scrapy
Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。
7、Gensim
Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。
5个常用的Python标准库:
1、os:提供了不少与操作系统相关联的函数库
os包是Python与操作系统的接口。我们可以用os包来实现操作系统的许多功能,比如管理系统进程,改变当前路径,改变文件权限等。但要注意,os包是建立在操作系统的平台上的,许多功能在Windows系统上是无法实现的。另外,在使用os包中,要注意其中的有些功能已经被其他的包取代。
我们通过文件系统来管理磁盘上储存的文件。查找、删除、复制文件以及列出文件列表等都是常见的文件操作。这些功能通常可以在操作系统中看到,但现在可以通过Python标准库中的glob包、shutil包、os.path包以及os包的一些函数等,在Python内部实现。
2、sys:通常用于命令行参数的库
sys包被用于管理Python自身的运行环境。Python是一个解释器,也是一个运行在操作系统上的程序。我们可以用sys包来控制这一程序运行的许多参数,比如说Python运行所能占据的内存和CPU,Python所要扫描的路径等。另一个重要功能是和Python自己的命令行互动,从命令行读取命令和参数。
3、random:用于生成随机数的库
Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打乱一组数据等。
4、math:提供了数学常数和数学函数
标准库中,Python定义了一些新的数字类型,以弥补之前的数字类型可能的不足。标准库还包含了random包,用于处理随机数相关的功能。math包补充了一些重要的数学常数和数学函数,比如pi、三角函数等等。
5、datetime:日期和时间的操作库
日期和时间的管理并不复杂,但容易犯错。Python的标准库中对日期和时间的管理颇为完善,你不仅可以进行日期时间的查询和变换,还可以对日期时间进行运算。通过这些标准库,还可以根据需要控制日期时间输出的文本格式。
除此之外,Python还有很多第三方库,了解更多可移步:oldboyedu
本文Python 操作 MySQL 数据库需要是使用到 PyMySQL 驱动
Python 操作 MySQL 前提是要安装好 MySQL 数据库并能正常连接使用,安装步骤详见下文。
注意: 安装过程我们需要通过开启管理员权限来安装,否则会由于权限不足导致无法安装。
首先需要先下载 MySQL 安装包, 官网下载地址 下载对应版本即可,或直接在网上拉取并安装:
权限设置:
初始化 MySQL:
启动 MySQL:
查看 MySQL 运行状态:
Mysql安装成功后,默认的root用户密码为空,你可以使用以下命令来创建root用户的密码:
登陆:
创建数据库:
查看数据库:
PyMySQL 模块使用 pip命令进行安装:
假如系统不支持 pip 命令,可以使用以下方式安装:
pymysql .connect 函数:连接上数据库
输出结果显示如下:表面数据库连接成功
使用 pymysql 的 connect() 方法连接数据库,connect 参数解释如下:
conn.cursor():获取游标
如果要操作数据库,光连接数据是不够的,咱们必须拿到操作数据库的游标,才能进行后续的操作,游标的主要作用是用来接收数据库操作后的返回结果,比如读取数据、添加数据。通过获取到的数据库连接实例 conn 下的 cursor() 方法来创建游标,实例如下:
输出结果为:
cursor 返回一个游标实例对象,其中包含了很多操作数据的方法,如执行sql语句,sql 执行命令: execute() 和 executemany()
execute(query,args=None):
executemany(query,args=None):
其他游标对象如下表:
完整数据库连接操作实例如下:
以上结果输出为:
创建表代码如下:
如下所示数据库表创建成功:
插入数据实现代码:
插入数据结果:
Python查询Mysql使用 fetchone() 方法获取单条数据, 使用fetchall() 方法获取多条数据。
查询数据代码如下:
输出结果:
DB API中定义了一些数据库操作的错误及异常,下表列出了这些错误和异常:
本文给大家介绍 Python 如何连接 Mysql 进行数据的增删改查操作,文章通过简洁的代码方式进行示例演示,给使用 Python 操作 Mysql 的工程师提供支撑。
对大多数软件开发者而言,术语数据库通常是指RDBMS(关系数据库管理系统), 这些系统使用表格(类似于电子表格的网格),其中行表示记录,列表示记录的字段。表格及其中存放的数据是使用SQL (结构化査询语言)编写的语句来创建并操纵的。Python提供了用于操纵SQL数据库的API(应用程序接口),通常与作为标准的SQLite 3数据库一起发布。
另一种数据库是DBM (数据库管理器),其中存放任意数量的键-值项。Python 的标准库提供了几种DBM的接口,包括某些特定于UNIX平台的。DBM的工作方式 与Python中的字典类似,区别在于DBM通常存放于磁盘上而不是内存中,并且其键与值总是bytes对象,并可能受到长度限制。本章第一节中讲解的shelve模块提供了方便的DBM接口,允许我们使用字符串作为键,使用任意(picklable)对象作为值。
如果可用的 DBM 与 SQLite 数据库不够充分,Python Package Index, pypi.python.org/pypi中提供了大量数据库相关的包,包括bsddb DBM ("Berkeley DB"),对象-关系映射器,比如SQLAlchemy (),以及流行的客户端/服务器数据的接口,比如 DB2、Informix、Ingres、MySQL、ODBC 以及 PostgreSQL。
本章中,我们将实现某程序的两个版本,该程序用于维护一个DVD列表,并追踪每个DVD的标题、发行年份、时间长度以及发行者。该程序的第一版使用DBM (通过shelve模块)存放其数据,第二版则使用SQLite数据库。两个程序都可以加载与保存简单的XML格式,这使得从某个程序导出DVD数据并将其导入到其他程序成为可能。与DBM版相比,基于SQL的程序提供了更多一些的功能,并且其数据设计也稍干净一些。
12.1 DBM数据库
shelve模块为DBM提供了一个wrapper,借助于此,我们在与DBM交互时,可以将其看做一个字典,这里是假定我们只使用字符串键与picklable值,实际处理时, shelve模块会将键与值转换为bytes对象(或者反过来)。
由于shelve模块使用的是底层的DBM,因此,如果其他计算机上没有同样的DBM,那么在某台计算机上保存的DBM文件在其他机器上无法读取是可能的。为解决这一问题,常见的解决方案是对那些必须在机器之间可传输的文件提供XML导入与导出功能,这也是我们在本节的DVD程序dvds-dbm.py中所做的。
对键,我们使用DVD的标题;对值,则使用元组,其中存放发行者、发行年份以及时间。借助于shelve模块,我们不需要进行任何数据转换,并可以把DBM对象当做一个字典进行处理。
程序在结构上类似于我们前面看到的那种菜单驱动型的程序,因此,这里主要展示的是与DBM程序设计相关的那部分。下面给出的是程序main()函数中的一部分, 忽略了其中菜单处理的部分代码。
db = None
try:
db = shelve.open(filename, protocol=pickle.HIGHEST_PROTOCOL)
finally:
if db is not None:
db.dose()
这里我们已打开(如果不存在就创建)指定的DBM文件,以便于对其进行读写操作。每一项的值使用指定的pickle协议保存为一个pickle,现有的项可以被读取, 即便是使用更底层的协议保存的,因为Python可以计算出用于读取pickle的正确协议。最后,DBM被关闭——其作用是清除DBM的内部缓存,并确保磁盘文件可以反映出已作的任何改变,此外,文件也需要关闭。
该程序提供了用于添加、编辑、列出、移除、导入、导出DVD数据的相应选项。除添加外,我们将忽略大部分用户接口代码,同样是因为已经在其他上下文中进行了展示。
def add_dvd(db):
title = Console.get_string("Title", "title")
if not title:
return
director = Console.get_string("Director", "director")
if not director:
return
year = Console.get_integer("Year", "year",minimum=1896,
maximum=datetime,date.today().year)
duration = Console.get_integer("Duration (minutes)", "minutes“, minimum=0, maximum=60*48)
db[title] = (director, year, duration)
db.sync()
像程序菜单调用的所有函数一样,这一函数也以DBM对象(db)作为其唯一参数。该函数的大部分工作都是获取DVD的详细资料,在倒数第二行,我们将键-值项存储在DBM文件中,DVD的标题作为键,发行者、年份以及时间(由shelve模块pickled在一起)作为值。
为与Python通常的一致性同步,DBM提供了与字典一样的API,因此,除了 shelve.open() 函数(前面已展示)与shelve.Shelf.sync()方法(该方法用于清除shelve的内部缓存,并对磁盘上文件的数据与所做的改变进行同步——这里就是添加一个新项),我们不需要学习任何新语法。
def edit_dvd(db):
old_title = find_dvd(db, "edit")
if old_title is None:
return
title = Console.get.string("Title", "title", old_title)
if not title:
return
director, year, duration = db[old_title]
...
db[title]= (director, year, duration)
if title != old_title:
del db[old_title]
db.sync()
为对某个DVD进行编辑,用户必须首先选择要操作的DVD,也就是获取DVD 的标题,因为标题用作键,值则用于存放其他相关数据。由于必要的功能在其他场合 (比如移除DVD)也需要使用,因此我们将其实现在一个单独的find_dvd()函数中,稍后将査看该函数。如果找到了该DVD,我们就获取用户所做的改变,并使用现有值作为默认值,以便提高交互的速度。(对于这一函数,我们忽略了大部分用户接口代码, 因为其与添加DVD时几乎是相同的。)最后,我们保存数据,就像添加时所做的一样。如果标题未作改变,就重写相关联的值;如果标题已改变,就创建一个新的键-值对, 并且需要删除原始项。
def find_dvd(db, message):
message = "(Start of) title to " + message
while True:
matches =[]
start = Console.get_string(message, "title")
if not start:
return None
for title in db:
if title.lower().startswith(start.lower()):
matches.append(title)
if len(matches) == 0:
print("There are no dvds starting with", start)
continue
elif len(matches) == 1:
return matches[0]
elif len(matches) DISPLAY_LIMIT:
print("Too many dvds start with {0}; try entering more of the title".format(start)
continue
else:
matches = sorted(matches, key=str.lower)
for i, match in enumerate(matches):
print("{0}: {1}".format(i+1, match))
which = Console.get_integer("Number (or 0 to cancel)",
"number", minimum=1, maximum=len(matches))
return matches[which - 1] if which != 0 else None
为尽可能快而容易地发现某个DVD,我们需要用户只输入其标题的一个或头几个字符。在具备了标题的起始字符后,我们在DBM中迭代并创建一个匹配列表。如果只有一个匹配项,就返回该项;如果有几个匹配项(但少于DISPLAY_LIMIT, 一个在程序中其他地方设置的整数),就以大小写不敏感的顺序展示所有这些匹配项,并为每一项设置一个编号,以便用户可以只输入编号就可以选择某个标题。(Console.get_integer()函数可以接受0,即便最小值大于0,以便0可以用作一个删除值。通过使用参数allow_zero=False, 可以禁止这种行为。我们不能使用Enter键,也就是说,没有什么意味着取消,因为什么也不输入意味着接受默认值。)
def list_dvds(db):
start =”"
if len(db) DISPLAY.LIMIT:
start = Console.get_string(“List those starting with [Enter=all]”, "start”)
print()
for title in sorted(db, key=str.lower):
if not start or title.Iower().startswith(start.lower()):
director, year, duration = db[title]
print("{title} ({year}) {duration} minute{0}, by "
"{director}".format(Util.s(duration),**locals()))
列出所有DVD (或者那些标题以某个子字符串引导)就是对DBM的所有项进行迭代。
Util.s()函数就是简单的s = lambda x: "" if x == 1 else "s",因此,如果时间长度不是1分钟,就返回"s"。
def remove_dvd(db):
title = find_dvd(db, "remove")
if title is None:
return
ans = Console.get_bool("Remove {0}?".format(title), "no")
if ans:
del db[title]
db.sync()
要移除一个DVD,首先需要找到用户要移除的DVD,并请求确认,获取后从DBM中删除该项即可。
到这里,我们展示了如何使用shelve模块打开(或创建)一个DBM文件,以及如何向其中添加项、编辑项、对其项进行迭代以及移除某个项。
遗憾的是,在我们的数据设计中存在一个瑕疵。发行者名称是重复的,这很容易导致不一致性,比如,发行者Danny DeVito可能被输入为"Danny De Vito",用于 一个电影;也可以输入为“Danny deVito",用于另一个。为解决这一问题,可以使用两个DBM文件,主DVD文件使用标题键与(年份,时间长度,发行者ID)值; 发行者文件使用发行者ID (整数)键与发行者名称值。下一节展示的SQL数据库 版程序将避免这一瑕疵,这是通过使用两个表格实现的,一个用于DVD,另一个用于发行者。
12.2 SQL数据库
大多数流行的SQL数据库的接口在第三方模块中是可用的,Python带有sqlite3 模块(以及SQLite 3数据库),因此,在Python中,可以直接开始数据库程序设计。SQLite是一个轻量级的SQL数据库,缺少很多诸如PostgreSQL这种数据库的功能, 但非常便于构造原型系统,并且在很多情况下也是够用的。
为使后台数据库之间的切换尽可能容易,PEP 249 (Python Database API Specification v2.0)提供了称为DB-API 2.0的API规范。数据库接口应该遵循这一规范,比如sqlite3模块就遵循这一规范,但不是所有第三方模块都遵循。API规范中指定了两种主要的对象,即连接对象与游标对象。表12-1与表12-2中分别列出了这两种对象必须支持的API。在sqlite3模块中,除DB-API 2.0规范必需的之外,其连接对象与游标对象都提供了很多附加的属性与方法。
DVD程序的SQL版本为dvds.sql.py,该程序将发行者与DVD数据分开存储,以 避免重复,并提供一个新菜单,以供用户列出发行者。该程序使用的两个表格在图12-1
def connect(filename):
create= not os.path.exists(filename)
db = sqlite3.connect(filename)
if create:
cursor = db.cursor()
cursor.execute("CREATE TABLE directors ("
"id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL, "
"name TEXT UNIQUE NOT NULL)")
cursor.execute("CREATE TABLE dvds ("
"id INTEGER PRIMARY KEY AUTOINCREMENT UNIQUE NOT NULL, "
"title TEXT NOT NULL, "
"year INTEGER NOT NULL,"
"duration INTEGER NOT NULL, "
"director_id INTEGER NOT NULL, ”
"FOREIGN KEY (director_id) REFERENCES directors)")
db.commit()
return db
sqlite3.connect()函数会返回一个数据库对象,并打开其指定的数据库文件。如果该文件不存在,就创建一个空的数据库文件。鉴于此,在调用sqlite3.connect()之前,我们要注意数据库是否是准备从头开始创建,如果是,就必须创建该程序要使用的表格。所有査询都是通过一个数据库游标完成的,可以从数据库对象的cursor()方法获取。
注意,两个表格都是使用一个ID字段创建的,ID字段有一个AUTOINCREMENT 约束——这意味着SQLite会自动为ID字段赋予唯一性的数值,因此,在插入新记录时,我们可以将这些字段留给SQLite处理。
SQLite支持有限的数据类型——实际上就是布尔型、数值型与字符串——但使用数据'‘适配器”可以对其进行扩展,或者是扩展到预定义的数据类型(比如那些用于日期与datetimes的类型),或者是用于表示任意数据类型的自定义类型。DVD程序并不需要这一功能,如果需要,sqlite3模块的文档提供了很多详细解释。我们使用的外部键语法可能与用于其他数据库的语法不同,并且在任何情况下,只是记录我们的意图,因为SQLite不像很多其他数据库那样需要强制关系完整性,sqlite3另一点与众不同的地方在于其默认行为是支持隐式的事务处理,因此,没有提供显式的“开始事务” 方法。
def add_dvd(db):
title = Console.get_string("Title", "title")
if not title:
return
director = Console.get_string("Director", "director")
if not director:
return
year = Console.get_integer("Year", "year”, minimum=1896,
maximum=datetime.date.today().year)
duration = Console.get_integer("Duration (minutes)", "minutes",
minimum=0,maximum=60*48)
director_id = get_and_set_director(db, director)
cursor = db.cursor()
cursor.execute("INSERT INTO dvds ”
"(title, year, duration, director_id)"
"VALUES (?, ?, ?, ?)",
(title, year, duration, director_id))
db.commit()
这一函数的开始代码与dvds-dbm.py程序中的对应函数一样,但在完成数据的收集后,与原来的函数有很大的差别。用户输入的发行者可能在也可能不在directors表格中,因此,我们有一个get_and_set_director()函数,在数据库中尚无某个发行者时, 该函数就将其插入到其中,无论哪种情况都返回就绪的发行者ID,以便在需要的时候插入到dvds表。在所有数据都可用后,我们执行一条SQL INSERT语句。我们不需要指定记录ID,因为SQLite会自动为我们提供。
在査询中,我们使用问号(?)作为占位符,每个?都由包含SQL语句的字符串后面的序列中的值替代。命名的占位符也可以使用,后面在编辑记录时我们将看到。尽管避免使用占位符(而只是简单地使用嵌入到其中的数据来格式化SQL字符串)也是可能的,我们建议总是使用占位符,并将数据项正确编码与转义的工作留给数据库模块来完成。使用占位符的另一个好处是可以提高安全性,因为这可以防止任意的SQL 被恶意地插入到一个査询中。
def get_and_set_director(db, director):
director_id = get_director_id(db, director)
if directorjd is not None:
return director_id
cursor = db.cursor()
cursor.execute("lNSERT INTO directors (name) VALUES (?)”,(director,))
db.commit()
return get_director_id(db, director)
这一函数返回给定发行者的ID,并在必要的时候插入新的发行者记录。如果某个记录被插入,我们首先尝试使用get_director_id()函数取回其ID。
def get_director_id(db, director):
cursor = db.cursor()
cursor.execute("SELECT id FROM directors WHERE name=?",(director,))
fields = cursor.fetchone()
return fields[0] if fields is not None else None
get_director_id()函数返回给定发行者的ID,如果数据库中没有指定的发行者,就返回None。我们使用fetchone()方法,因为或者有一个匹配的记录,或者没有。(我们知道,不会有重复的发行者,因为directors表格的名称字段有一个UNIQUE约束,在任何情况下,在添加一个新的发行者之前,我们总是先检査其是否存在。)这种取回方法总是返回一个字段序列(如果没有更多的记录,就返回None)。即便如此,这里我们只是请求返回一个单独的字段。
def edit_dvd(db):
title, identity = find_dvd(db, "edit")
if title is None:
return
title = Console.get_string("Title","title", title)
if not title:
return
cursor = db.cursor()
cursor.execute("SELECT dvds.year, dvds.duration, directors.name"
“FROM dvds, directors "
"WHERE dvds.director_id = directors.id AND "
"dvds.id=:id", dict(id=identity))
year, duration, director = cursor.fetchone()
director = Console.get_string("Director", "director", director)
if not director:
return
year = Console,get_integer("Year","year", year, 1896,datetime.date.today().year)
duration = Console.get_integer("Duration (minutes)", "minutes",
duration, minimum=0, maximum=60*48)
director_id = get_and_set_director(db, director)
cursor.execute("UPDATE dvds SET title=:title, year=:year,"
"duration=:duration, director_id=:directorjd "
"WHERE id=:identity", locals())
db.commit()
要编辑DVD记录,我们必须首先找到用户需要操纵的记录。如果找到了某个记录,我们就给用户修改其标题的机会,之后取回该记录的其他字段,以便将现有值作为默认值,将用户的输入工作最小化,用户只需要按Enter键就可以接受默认值。这里,我们使用了命名的占位符(形式为:name),并且必须使用映射来提供相应的值。对SELECT语句,我们使用一个新创建的字典;对UPDATE语句,我们使用的是由 locals()返回的字典。
我们可以同时为这两个语句都使用新字典,这种情况下,对UPDATE语句,我们可以传递 dict(title=title, year=year, duration=duration, director_id=director_id, id=identity)),而非 locals()。
在具备所有字段并且用户已经输入了需要做的改变之后,我们取回相应的发行者ID (如果必要就插入新的发行者记录),之后使用新数据对数据库进行更新。我们采用了一种简化的方法,对记录的所有字段进行更新,而不仅仅是那些做了修改的字段。
在使用DBM文件时,DVD标题被用作键,因此,如果标题进行了修改,我们就需要创建一个新的键-值项,并删除原始项。不过,这里每个DVD记录都有一个唯一性的ID,该ID是记录初次插入时创建的,因此,我们只需要改变任何其他字段的值, 而不需要其他操作。
def find_dvd(db, message):
message = "(Start of) title to " + message
cursor = db.cursor()
while True: .
start = Console.get_stnng(message, "title")
if not start:
return (None, None)
cursor.execute("SELECT title, id FROM dvds "
"WHERE title LIKE ? ORDER BY title”,
(start +"%",))
records = cursor.fetchall()
if len(records) == 0:
print("There are no dvds starting with", start)
continue
elif len(records) == 1:
return records[0]
elif len(records) DISPLAY_LIMIT:
print("Too many dvds ({0}) start with {1}; try entering "
"more of the title".format(len(records),start))
continue
else:
for i, record in enumerate(records):
print("{0}:{1}".format(i + 1, record[0]))
which = Console.get_integer("Number (or 0 to cancel)",
"number", minimum=1, maximum=len(records))
return records[which -1] if which != 0 else (None, None)
这一函数的功能与dvdsdbm.py程序中的find_dvd()函数相同,并返回一个二元组 (DVD标题,DVD ID)或(None, None),具体依赖于是否找到了某个记录。这里并不需要在所有数据上进行迭代,而是使用SQL通配符(%),因此只取回相关的记录。
由于我们希望匹配的记录数较小,因此我们一次性将其都取回到序列的序列中。如果有不止一个匹配的记录,但数量上又少到可以显示,我们就打印记录,并将每条记录附带一个数字编号,以便用户可以选择需要的记录,其方式与在dvds-dbm.py程序中所做的类似:
def list_dvds(db):
cursor = db.cursor()
sql = ("SELECT dvds.title, dvds.year, dvds.duration, "
"directors.name FROM dvds, directors "
"WHERE dvds.director_id = directors.id")
start = None
if dvd_count(db) DISPLAY_LIMIT:
start = Console.get_string("List those starting with [Enter=all]", "start")
sql += " AND dvds.title LIKE ?"
sql += ” ORDER BY dvds.title"
print()
if start is None:
cursor.execute(sql)
else:
cursor.execute(sql, (start +"%",))
for record in cursor:
print("{0[0]} ({0[1]}) {0[2]} minutes, by {0[3]}".format(record))
要列出每个DVD的详细资料,我们执行一个SELECT査询。该査询连接两个表,如果记录(由dvd_count()函数返回)数量超过了显示限制值,就将第2个元素添加到WHERE 分支,之后执行该査询,并在结果上进行迭代。每个记录都是一个序列,其字段是与 SELECT査询相匹配的。
def dvd_count(db):
cursor = db.cursor()
cursor.execute("SELECT COUNT(*) FROM dvds")
return cursor.fetchone()[0]
我们将这几行代码放置在一个单独的函数中,因为我们在几个不同的函数中都需要使用这几行代码。
我们忽略了 list_directors()函数的代码,因为该函数在结构上与list_dvds()函数非常类似,只不过更简单一些,因为本函数只列出一个字段(name)。
def remove_dvd(db):
title, identity = find_dvd(db, "remove")
if title is None:
return
ans = Console.get_bool("Remove {0}?".format(title), "no")
if ans:
cursor = db.cursor()
cursor.execute("DELETE FROM dvds WHERE id=?", (identity,))
db.commit()
在用户需要删除一个记录时,将调用本函数,并且本函数与dvds-dbm.py程序中 相应的函数是非常类似的。
到此,我们完全查阅了 dvds-sql.py程序,并且了解了如何创建数据库表格、选取 记录、在选定的记录上进行迭代以及插入、更新与删除记录。使用execute()方法,我们可以执行底层数据库所支持的任意SQL语句。
SQLite提供了比我们这里使用的多得多的功能,包括自动提交模式(以及任意其他类型的事务控制),以及创建可以在SQL查询内执行的函数的能力。提供一个工厂函数并用于控制对每个取回的记录返回什么(比如,一个字典或自定义类型,而不是字段序列)也是可能的。此外,通过传递“:memory:”作为文件名,创建内存中的SQLite 数据库也是可能的。
以上内容部分摘自视频课程05后端编程Python22 数据库编程,更多实操示例请参照视频讲解。跟着张员外讲编程,学习更轻松,不花钱还能学习真本领。