十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
用directshow获取帧缓存,转换为标准图像格式(比如jpg,png这些),存储到数据库的image字段里就行了.
创新互联于2013年成立,是专业互联网技术服务公司,拥有项目网站设计制作、成都网站设计网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元安化做网站,已为上家服务,为安化各地企业和个人服务,联系电话:028-86922220
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。
本文针对几种经典而常用的二值发放进行了简单的讨论并给出了其vb.net 实现。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。
2、OTSU 算法(大津法)
OSTU算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。1978 OTSU年提出的最大类间方差法以其计算简单、稳定有效,一直广为使用。
3、迭代法(最佳阀值法)
(1). 求出图象的最大灰度值和最小灰度值,分别记为Zl和Zk,令初始阈值为:
(2). 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值Z0和ZB:
式中,Z(i,j)是图像上(i,j)点的象素值,N(i,j)是(i,j)点的权值,一般取1。
(3). 若TK=TK+1,则所得即为阈值,否则转2,迭代计算。
4、一维最大熵阈值法
它的思想是统计图像中每一个灰度级出现的概率 ,计算该灰度级的熵 ,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:
O区: i=1,2……,t
B区: i=t+1,t+2……L-1
上式中的 ,这样对于数字图像中的目标和背景区域的熵分别为:
对图像中的每一个灰度级分别求取W=H0 +HB,选取使W最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。
应该是边界溢出了,因为默认是0开始,所以 PictureBox1.Image.Width-1
同理PictureBox1.Image.Height - 1,不然行循环也会溢出
1.我有个思路可以尝试一下:把一张字节数在280-300K的图片用PS打开看看像素大小;
2.定义一个新的位图,指定像素大小为上面得到的数据;
3.读取你需要修改大小的JPG文件,然后按指定大小复制到上面新建的位图,并保存为JPG格式
要使用GetPixel函数来取得像素的颜色值,代码如下:
1
2
3
4
5
private void button1_Click(object sender, EventArgs e)
{
Color color = new Bitmap(pictureBox1.Image).GetPixel(10, 10);
MessageBox.Show(color.ToString());
保存前加一句 myImage2.SetResolution(300, 300) 你设置的bMape不是保存的主画布 所以无效,设置分辨率就是 SetResolution(X,Y)