十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
有阶乘函数,Numpy中,mat必须是2维的,但是array可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。
专注于为中小企业提供做网站、成都做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业兴宁免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上千多家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。
若a=mat([1,2,3]) 是矩阵,则 a.A 则转换成了数组,反之,a.M则转换成了矩阵。
扩展资料:
常用的Numpy运算:
取矩阵中的某一行 ss[1,:] 或该行的某两列 ss[1,0:2]
将数组转换成矩阵 randMat=mat(random.rand(4,4))
矩阵求逆 randMat.I
单位阵 eye(4)
零矩阵 zeros((x,y)) 建立x行y列的零矩阵。
最大值和最小值 a.max(),a.min() ,而a.max(0) 表示按列选取每列的最大值。最大/小元素的下标 a.argmax(),a.argmin()
#作为方法x.sum() #所有元素相加x.sum(axis=0) #按列相加x.sum(axis=1) #按行相加#作为函数sum(a,axis=0)ss.mean()
mean(a,axis=0(或1)) #按列或行求均值var(a)var(a,axis=0(或1)) #按列或行求方差。
std(a)std(a,axis=0(或1)) #按列或行求标准差ss.T或ss.transpose() #转置。
clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
概述
直接提取会报错,把array数组转换成list,即可提取,使用numpy转换
步骤详解
1、直接提取尝试:
group=[[1,2],[2,3],[3,4]]
#提取第一列元素
print(group[:,1])
#Out:TypeError: list indices must be integers or slices, not tuple
2、使用numpy转换:
import numpy as np
group=[[1,2],[2,3],[3,4]]
#numpy转化
ar=np.array(group)
print(ar[:,1])
#Out:[2 3 4]
拓展内容
numpy详解
Numpy对象是数组,称为ndarray
维度(dimensions)称作轴(axes),轴的个数叫做秩(rank)。注:有几级中括号就有几个维度
一、ndarray.attrs:
ndarray.ndim 秩
ndarray.shape 例如一个2排3列的矩阵,它的shape属性是(2,3)
ndarray.size 数组元素的总个数
ndarray.dtype 元素类型,NumPy提供自己的数据类型
ndarray.itemsize 数组中每个元素的字节大小
二、数组创建函数:
array
asarray将输入转换成ndarray
arange
ones
zeros
empty 只分配内存空间不填充任何值
eye 创建N*N单位矩阵(对角线为1)
三、数组和标量之间的运算
numpy数组的一个特点,不用编写循环就可对数据执行批量运算,这通常称作矢量化(vectorization)。
四、基本的索引和切片
numpy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。这里我仅详细介绍常用的方法,对于高级功能的方式我列举名称,读者可以等到要用的时候自行查阅资料。
savetxt
import numpy as np
i2 = np.eye(2)
np.savetxt("eye.txt", i2)
3.4 读入CSV文件
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
c,v=np.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True) #index从0开始
3.6.1 算术平均值
np.mean(c) = np.average(c)
3.6.2 加权平均值
t = np.arange(len(c))
np.average(c, weights=t)
3.8 极值
np.min(c)
np.max(c)
np.ptp(c) 最大值与最小值的差值
3.10 统计分析
np.median(c) 中位数
np.msort(c) 升序排序
np.var(c) 方差
3.12 分析股票收益率
np.diff(c) 可以返回一个由相邻数组元素的差
值构成的数组
returns = np.diff( arr ) / arr[ : -1] #diff返回的数组比收盘价数组少一个元素
np.std(c) 标准差
对数收益率
logreturns = np.diff( np.log(c) ) #应检查输入数组以确保其不含有零和负数
where 可以根据指定的条件返回所有满足条件的数
组元素的索引值。
posretindices = np.where(returns 0)
np.sqrt(1./252.) 平方根,浮点数
3.14 分析日期数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
dates, close=np.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1:datestr2num}, unpack=True)
print "Dates =", dates
def datestr2num(s):
return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()
# 星期一 0
# 星期二 1
# 星期三 2
# 星期四 3
# 星期五 4
# 星期六 5
# 星期日 6
#output
Dates = [ 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 4. 0. 1. 2. 3. 4. 0.
1. 2. 3. 4.]
averages = np.zeros(5)
for i in range(5):
indices = np.where(dates == i)
prices = np.take(close, indices) #按数组的元素运算,产生一个数组作为输出。
a = [4, 3, 5, 7, 6, 8]
indices = [0, 1, 4]
np.take(a, indices)
array([4, 3, 6])
np.argmax(c) #返回的是数组中最大元素的索引值
np.argmin(c)
3.16 汇总数据
# AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
#得到第一个星期一和最后一个星期五
first_monday = np.ravel(np.where(dates == 0))[0]
last_friday = np.ravel(np.where(dates == 4))[-1]
#创建一个数组,用于存储三周内每一天的索引值
weeks_indices = np.arange(first_monday, last_friday + 1)
#按照每个子数组5个元素,用split函数切分数组
weeks_indices = np.split(weeks_indices, 5)
#output
[array([1, 2, 3, 4, 5]), array([ 6, 7, 8, 9, 10]), array([11,12, 13, 14, 15])]
weeksummary = np.apply_along_axis(summarize, 1, weeks_indices,open, high, low, close)
def summarize(a, o, h, l, c): #open, high, low, close
monday_open = o[a[0]]
week_high = np.max( np.take(h, a) )
week_low = np.min( np.take(l, a) )
friday_close = c[a[-1]]
return("APPL", monday_open, week_high, week_low, friday_close)
np.savetxt("weeksummary.csv", weeksummary, delimiter=",", fmt="%s") #指定了文件名、需要保存的数组名、分隔符(在这个例子中为英文标点逗号)以及存储浮点数的格式。
0818b9ca8b590ca3270a3433284dd417.png
格式字符串以一个百分号开始。接下来是一个可选的标志字符:-表示结果左对齐,0表示左端补0,+表示输出符号(正号+或负号-)。第三部分为可选的输出宽度参数,表示输出的最小位数。第四部分是精度格式符,以”.”开头,后面跟一个表示精度的整数。最后是一个类型指定字符,在例子中指定为字符串类型。
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
def my_func(a):
... """Average first and last element of a 1-D array"""
... return (a[0] + a[-1]) * 0.5
b = np.array([[1,2,3], [4,5,6], [7,8,9]])
np.apply_along_axis(my_func, 0, b) #沿着X轴运动,取列切片
array([ 4., 5., 6.])
np.apply_along_axis(my_func, 1, b) #沿着y轴运动,取行切片
array([ 2., 5., 8.])
b = np.array([[8,1,7], [4,3,9], [5,2,6]])
np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
3.20 计算简单移动平均线
(1) 使用ones函数创建一个长度为N的元素均初始化为1的数组,然后对整个数组除以N,即可得到权重。如下所示:
N = int(sys.argv[1])
weights = np.ones(N) / N
print "Weights", weights
在N = 5时,输出结果如下:
Weights [ 0.2 0.2 0.2 0.2 0.2] #权重相等
(2) 使用这些权重值,调用convolve函数:
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
sma = np.convolve(weights, c)[N-1:-N+1] #卷积是分析数学中一种重要的运算,定义为一个函数与经过翻转和平移的另一个函数的乘积的积分。
t = np.arange(N - 1, len(c)) #作图
plot(t, c[N-1:], lw=1.0)
plot(t, sma, lw=2.0)
show()
3.22 计算指数移动平均线
指数移动平均线(exponential moving average)。指数移动平均线使用的权重是指数衰减的。对历史上的数据点赋予的权重以指数速度减小,但永远不会到达0。
x = np.arange(5)
print "Exp", np.exp(x)
#output
Exp [ 1. 2.71828183 7.3890561 20.08553692 54.59815003]
Linspace 返回一个元素值在指定的范围内均匀分布的数组。
print "Linspace", np.linspace(-1, 0, 5) #起始值、终止值、可选的元素个数
#output
Linspace [-1. -0.75 -0.5 -0.25 0. ]
(1)权重计算
N = int(sys.argv[1])
weights = np.exp(np.linspace(-1. , 0. , N))
(2)权重归一化处理
weights /= weights.sum()
print "Weights", weights
#output
Weights [ 0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
(3)计算及作图
c = np.loadtxt('data.csv', delimiter=',', usecols=(6,),unpack=True)
ema = np.convolve(weights, c)[N-1:-N+1]
t = np.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
3.26 用线性模型预测价格
(x, residuals, rank, s) = np.linalg.lstsq(A, b) #系数向量x、一个残差数组、A的秩以及A的奇异值
print x, residuals, rank, s
#计算下一个预测值
print np.dot(b, x)
3.28 绘制趋势线
x = np.arange(6)
x = x.reshape((2, 3))
x
array([[0, 1, 2], [3, 4, 5]])
np.ones_like(x) #用1填充数组
array([[1, 1, 1], [1, 1, 1]])
类似函数
zeros_like
empty_like
zeros
ones
empty
3.30 数组的修剪和压缩
a = np.arange(5)
print "a =", a
print "Clipped", a.clip(1, 2) #将所有比给定最大值还大的元素全部设为给定的最大值,而所有比给定最小值还小的元素全部设为给定的最小值
#output
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
a = np.arange(4)
print a
print "Compressed", a.compress(a 2) #返回一个根据给定条件筛选后的数组
#output
[0 1 2 3]
Compressed [3]
b = np.arange(1, 9)
print "b =", b
print "Factorial", b.prod() #输出数组元素阶乘结果
#output
b = [1 2 3 4 5 6 7 8]
Factorial 40320
print "Factorials", b.cumprod()
#output
print(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.
python2需要导入from_future_import division执行普通的除法。
1/2和1//2的结果0.5和0.
%号为取模运算。
乘方运算为2**3,-2**3和-(2**3)是等价的。
from sympy import*导入库
x,y,z=symbols('x y z'),定义变量
init_printing(use_unicode=True)设置打印方式。
python的内部常量有pi,
函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1。化简伽马函数。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。
expand((x + 1)**2)展开多项式。
expand((x + 1)*(x - 2) - (x - 1)*x)
因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2
from_future_import division
x,y,z,t=symbols('x y z t')定义变量,
k, m, n = symbols('k m n', integer=True)定义三个整数变量。
f, g, h = symbols('f g h', cls=Function)定义的类型为函数。
factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])
expand((cos(x) + sin(x))**2)展开多项式。
expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)将x合并。将x元素按阶次整合。
collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数。
cancel()is more efficient thanfactor().
cancel((x**2 + 2*x + 1)/(x**2 + x))
,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)
expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)
asin(1)
trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,
trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)
trigsimp(sin(x)*tan(x)/sec(x))
trigsimp(cosh(x)**2 + sinh(x)**2)双曲函数。
三角函数展开,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))
x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法。
sqrt(x) == x**Rational(1, 2)判断是否相等。
powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b。powsimp(x**a*y**a)相同幂的乘法。
powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.
powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子。声明强制进行化简。
(z*t)**2,sqrt(x*y)
第一个展开expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展开,
expand_power_base((z*t)**c, force=True)强制展开。
powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)
ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),
expand_log(log(x*y))展开为log(x) + log(y),但是python3没有。这是因为需要将x定义为positive。这是必须的,否则不会被展开。expand_log(log(x/y)),expand_log(log(x**n))
As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。
expand_log(log(z**2), force=True),强制展开。
logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。
factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数。
hyper([1, 2], [3], z),
tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽马函数重写阶乘。
expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),
hyperexpand(hyper([1, 1], [2], z)),
combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n+1, k+1)/binomial(n, k))化简。combsimp(gamma(x)*gamma(1 - x))
自定义函数
def list_to_frac(l):
expr = Integer(0)
for i in reversed(l[1:]):
expr += i
expr = 1/expr
return l[0] + expr
list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的。
syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4)。
这样也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作错误 。发现python和自动缩进有关,所以一定看好自动缩进的距离。list_to_frac([1, 2, 3, 4])结果为43/30。
使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式。
(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)
a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来。frac=1/(frac-a0)将a0去掉取倒。frac = apart(frac, a1)提出a1。
help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思。,
help("topics"),import os.path + help("os.path"),help("list"),help("open")
# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释。
定义
l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]
fromsympyimport*
x,y,z=symbols('x y z')
init_printing(use_unicode=True)
diff(cos(x),x)求导。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价。
diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数。和diff(expr, x, y, y, z, 4)等价。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏导。但是不显示。之后用deriv.doit()即可显示
integrate(cos(x), x)积分。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分。print(expr)print的使用。
expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x。
integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用。
limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。
Series Expansion级数展开。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除。exp(x-6).series(x,x0=6),,得到
-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶。
f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶,,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。
Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等。和solveset(Eq(x**2 - 1, 0), x)等价。solveset(x**2 - 1, x)
solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域。solveset(exp(x), x) # No solution exists解出EmptySet()表示空集。
等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}
A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多项式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2个3的重根,1个0根。solve([x*y - 1, x - 2], x, y)解出坐标。
f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,
Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])
N=Matrix([0,1,1])
M*N符合矩阵的乘法。M.shape显示矩阵的行列数。
M.row(0)获取M的第0行。M.col(-1)获取倒数第一列。
M.col_del(0)删掉第1列。M.row_del(1)删除第二行,序列是从0开始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。
M+N矩阵相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求转置。
eye(3)单位。zeros(2, 3),0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([
[-1, 0, 0, 0],
[ 0, 1, 1, 0],
[ 0, 1, 1, 0],
[ 0, 0, 0, 5],
[ 0, 0, 0, 7],
[ 0, 0, 0, 5]])矩阵。
Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
一行一行显示,,M.det()求行列式。M.rref()矩阵化简。得到结果为Matrix([
[1, 0, 1, 3],
[0, 1, 2/3, 1/3],
[0, 0, 0, 0]]), [0, 1])。
M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()
Columnspace
M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
P, D = M.diagonalize(),P得Matrix([
[0, 1, 1, 0],
[1, 1, 1, -1],
[1, 1, 1, 0],
[1, 1, 0, 1]]),,D为Matrix([
[-2, 0, 0, 0],
[ 0, 3, 0, 0],
[ 0, 0, 5, 0],
[ 0, 0, 0, 5]])
P*D*P**-1 == M返回为True。lamda = symbols('lamda')。
lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)
expr = x**2 + x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。
x = symbols('x')和x = Symbol('x')是一样的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y
type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。
Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函数为幂次。
expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。
expr.args[2].args得到(y, 2)。。y.args得到空括号。Integer(2).args得到空括号。
from sympy import *
E**(I*pi)+1,可以看出,I和E,pi已将在sympy内已定义。
x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数。再展开expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。
tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )
integrate(x*sin(x), x),,定积分integrate(x*sin(x), (x, 0, 2*pi))。。
用双重积分求解球的体积。
x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积。计算不来,是因为sympy不知道r是大于0的。r = symbols('r', positive=True)这样定义r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换。
integrate(circle_area,(x,-r,r))再积分即可。
expression.sub([(x,y),(y,x)])又换到原来的状况了。
expression.subs(x, y),,将算式中的x替换成y。。
expression.subs({x:y,u:v}) : 使用字典进行多次替换。。
expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换。。