快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

如何在pytorch中使用word2vec训练好的词向量-创新互联

这篇文章主要介绍了如何在pytorch中使用word2vec训练好的词向量,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

成都创新互联公司服务紧随时代发展步伐,进行技术革新和技术进步,经过10年的发展和积累,已经汇集了一批资深网站策划师、设计师、专业的网站实施团队以及高素质售后服务人员,并且完全形成了一套成熟的业务流程,能够完全依照客户要求对网站进行成都网站制作、成都网站设计、外贸营销网站建设、建设、维护、更新和改版,实现客户网站对外宣传展示的首要目的,并为客户企业品牌互联网化提供全面的解决方案。

示例

torch.nn.Embedding()

这个方法是在pytorch中将词向量和词对应起来的一个方法. 一般情况下,如果我们直接使用下面的这种:

self.embedding = torch.nn.Embedding(num_embeddings=vocab_size, embedding_dim=embeding_dim)
num_embeddings=vocab_size  表示词汇量的大小
embedding_dim=embeding_dim 表示词向量的维度

这种情况下, 因为没有指定训练好的词向量, 所以embedding会帮咱们生成一个随机的词向量(但是在我刚刚测试的一个情感二分类问题中, 我发现好像用不用预训练的词向量, 结果差不多, 不过不排除是因为当时使用的模型比较简单, 导致一些特征根本就没提取出来).

如果我想使用word2vec预训练好的词向量该怎么做呢?

其实很简单,pytorch已经给我们提供好了接口

self.embedding.weight.data.copy_(torch.from_numpy(embeding_vector))
self.embedding.weight.requires_grad = False

上面两句代码的意思, 第一句就是导入词向量, 第二句表示的是在反向传播的时候, 不要对这些词向量进行求导更新. 我还看到有人会在优化器那里使用这样的代码:

# emotion_net是我定义的模型
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, emotion_net.parameters()), lr=1e-3, betas=(0.9, 0.99))

大概意思也是为了保证词向量不会被反向传播而更新, 具体有没有用我就不清楚了.

其实我感觉大家比较在意的其实应该是embeding_vector的形式, 下面我就介绍一下embeding_vector的形式

为了讲述方便, 这里定义出下面几个矩阵

embeding_vector:表示词向量,每行是一个词的词向量,有多少行就说明有多少单词

word_list:表示单词列表,里面就是单词

word_to_index:这个矩阵将word_list中的单词和embeding_vector中的位置对应起来

其实embeding_vector是一个numpy矩阵, 当然你看到了, 实际输入到pytorch的时候, 是需要转换成tensor类型的. 这个矩阵是什么样子的呢? 其中这个矩阵是 [vocab_size×embeding_dim] [vocab\_size \times embeding\_dim][vocab_size×embeding_dim] 的形式. 其中一共包含vocab_size vocab\_sizevocab_size 个单词, 每个单词的维度是 embed_dim embed\_dimembed_dim, 我们把这样一个矩阵输入就行了.

之后, 我们要做的其实就是将 word_to_index word\_to\_indexword_to_index 这个矩阵搞出来, 这里的单词转下标的矩阵, 就是联系 embeding_vector embeding\_vectorembeding_vector 和 word_list word\_listword_list 这两个矩阵的中间者. 我们在输入到torch.nn.Embedding中之前, 需要先通过 word_to_index word\_to\_indexword_to_index 将单词转换成 embeding_vector embeding\_vectorembeding_vector 的下标就可以了.

感谢你能够认真阅读完这篇文章,希望小编分享的“如何在pytorch中使用word2vec训练好的词向量”这篇文章对大家有帮助,同时也希望大家多多支持创新互联成都网站设计公司,关注创新互联成都网站设计公司行业资讯频道,更多相关知识等着你来学习!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、网站设计器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文题目:如何在pytorch中使用word2vec训练好的词向量-创新互联
转载源于:http://6mz.cn/article/djppoj.html

其他资讯