快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

MongoDB表结构分析工具介绍--Variety-创新互联

今天给大家介绍一款分析MongoDB数据库表结构的软件 -- Varity.对于MongoDB这种Schema Free的数据库来说,用软件自带的查询collection中存储的数据情况很难一眼就看出具体的数据结构,Tomá Dvoák 作者写了一个Variety.js的脚本就很容易理解没个collection中的数据结构。作者将工具托管在github上,并且欢迎任何人来提供建议或者添加功能。以下Variety的特点翻译自作者的博客:

建网站原本是网站策划师、网络程序员、网页设计师等,应用各种网络程序开发技术和网页设计技术配合操作的协同工作。创新互联专业提供成都做网站、成都网站制作,网页设计,网站制作(企业站、成都响应式网站建设、电商门户网站)等服务,从网站深度策划、搜索引擎友好度优化到用户体验的提升,我们力求做到极致!

collection信息输出格式是ASCII的。

  • 可以很清晰看到每个key使用的是什么类型的数据格式

  • 可以看到没个key在这个collection的使用率是多少

  • 可以限制documents的查询数量

  • 可以限制查询documents的深度

  • 可以只分析documents的子集

  • 可以对查询结果排序

  • 可以保存查询结果

  • 可以以JSON格式输出

  • 工具简介易用,没用任何其他库依赖

Variety的下载地址 https://github.com/variety/variety。

使用方法:

mongo DATABASE_NAME --eval "var collection = 'COLL_NAME' " variety.js,比如我的DATABASE_NAME 是test, COLL_NAME是users,

我事先插入的数据是

db.users.insert({name: "Tom", bio: "A nice guy.", pets: ["monkey", "fish"], someWeirdLegacyKey: "I like Ike!"}); db.users.insert({name: "Dick", bio: "I swordfight.", birthday: new Date("1974/03/14")}); db.users.insert({name: "Harry", pets: "egret", birthday: new Date("1984/03/14")}); db.users.insert({name: "Shanker", bio: "a va?"});

正常的查询Users的回显是这样的

> db.users.find() { "_id" : ObjectId("56cfc28fbdae9b9a922a19cb"), "name" : "Tom", "bio" : "A nice guy", "pets" : [  "monkey",  "fish" ], "someWeirdLegacyKey" :                                                                                     "I like ike!" } { "_id" : ObjectId("56cfc2acbdae9b9a922a19cc"), "name" : "Dick", "bio" : "I swordfight." } { "_id" : ObjectId("56cfc2c6bdae9b9a922a19cd"), "name" : "Harry", "pets" : "egret" } { "_id" : ObjectId("56cfc2e0bdae9b9a922a19ce"), "name" : "Shanker", "bio" : "caca" }

用Variety查询结果是这样的

mongo test --eval "var collection = 'users'" variety.js MongoDB shell version: 2.4.9 connecting to: test Variety: A MongoDB Schema Analyzer Version 1.5.0, released 14 May 2015 Using collection of "users" Using query of { } Using limit of 4 Using maxDepth of 99 Using sort of { "_id" : -1 } Using outputFormat of "ascii" Using persistResults of false Using resultsDatabase of "varietyResults" Using resultsCollection of "usersKeys" Using resultsUser of null Using resultsPass of null Using plugins of [ ] +--------------------------------------------------------------------+ | key                | types                | occurrences | percents | | ------------------ | -------------------- | ----------- | -------- | | _id                | ObjectId             |           4 |    100.0 | | name               | String               |           4 |    100.0 | | bio                | String               |           3 |     75.0 | | pets               | String (1),Array (1) |           2 |     50.0 | | someWeirdLegacyKey | String               |           1 |     25.0 | +--------------------------------------------------------------------+

是不是格式很友好,很容易读懂了呢?

如果数据库用的不是默认端口,可以用--port参数:

mongo DATABASE_NAME --port 27111 --eval " var collection = 'COLL_NAME' " variety.js

如果db文件不在默认文件,可以用--dbpath参数:

mongo DATABASE_NAME --dbpath /path/to/database/folder --eval "var collection = 'COLL_NAME' " variety.js

如果需要对查询进行排序的话可以这样用:

mongo DATABASE_NAME --eval "var collection = 'COLL_NAME', sort = { date : -1 }" variety.js

如果需要JSON的输出格式的话可以这样用:

mongo DATABASE_NAME --eval "var collection = 'users', outputFormat = 'json' " variety.js

如果一个collection有10亿个数据,我们可以限制查询的数量,用limit来限定:

mongo DATABASE_NAME --eval "var collection ='users', limit = 1000 " variety.js

如果某个colletions嵌套的层数太多了,可以用maxDepth来限制查询:

db.users.insert({name:"Walter", someNestedObject:{a:{b:{c:{d:{e:1}}}}}});[ibmcloud@bravo:~/variety04:05]$mongo test --eval "var collection = 'users' " variety.js MongoDB shell version: 2.4.9 connecting to: test Variety: A MongoDB Schema Analyzer Version 1.5.0, released 14 May 2015 Using collection of "users" Using query of { } Using limit of 5 Using maxDepth of 99 Using sort of { "_id" : -1 } Using outputFormat of "ascii" Using persistResults of false Using resultsDatabase of "varietyResults" Using resultsCollection of "usersKeys" Using resultsUser of null Using resultsPass of null Using plugins of [ ] +----------------------------------------------------------------------------+ | key                        | types                | occurrences | percents | | -------------------------- | -------------------- | ----------- | -------- | | _id                        | ObjectId             |           5 |    100.0 | | name                       | String               |           5 |    100.0 | | bio                        | String               |           3 |     60.0 | | pets                       | String (1),Array (1) |           2 |     40.0 | | someNestedObject           | Object               |           1 |     20.0 | | someNestedObject.a         | Object               |           1 |     20.0 | | someNestedObject.a.b       | Object               |           1 |     20.0 | | someNestedObject.a.b.c     | Object               |           1 |     20.0 | | someNestedObject.a.b.c.d   | Object               |           1 |     20.0 | | someNestedObject.a.b.c.d.e | Number               |           1 |     20.0 | | someWeirdLegacyKey         | String               |           1 |     20.0 | +----------------------------------------------------------------------------+ [ibmcloud@bravo:~/variety05:06]$mongo test --eval "var collection = 'users', maxDepth = 3" variety.js MongoDB shell version: 2.4.9 connecting to: test Variety: A MongoDB Schema Analyzer Version 1.5.0, released 14 May 2015 Using collection of "users" Using query of { } Using limit of 5 Using maxDepth of 3 Using sort of { "_id" : -1 } Using outputFormat of "ascii" Using persistResults of false Using resultsDatabase of "varietyResults" Using resultsCollection of "usersKeys" Using resultsUser of null Using resultsPass of null Using plugins of [ ] +----------------------------------------------------------------------+ | key                  | types                | occurrences | percents | | -------------------- | -------------------- | ----------- | -------- | | _id                  | ObjectId             |           5 |    100.0 | | name                 | String               |           5 |    100.0 | | bio                  | String               |           3 |     60.0 | | pets                 | String (1),Array (1) |           2 |     40.0 | | someNestedObject     | Object               |           1 |     20.0 | | someNestedObject.a   | Object               |           1 |     20.0 | | someNestedObject.a.b | Object               |           1 |     20.0 | | someWeirdLegacyKey   | String               |           1 |     20.0 | +----------------------------------------------------------------------+

如果需要制定条件的查询,比如carddAbout为true的,可以这样:

mongo DATABASE_NAME --eval "var collection = 'COLL_NAME', query = {'caredAbout':true}" variety.js

需要注意的是,Variety在对数据结构进行分析的时候,实际是用MapReduce来做的,会进行全表扫描操作,所以如果是对线上库进行分析,那么建议最好使用一个不提供服务的备份库或者在业务低峰来做。避免给线上业务造成压力。

参考地址:

http://www.acetolyne.net/Projects7/node/48

https://github.com/variety/variety

http://www.mongoing.com/archives/2282

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


分享题目:MongoDB表结构分析工具介绍--Variety-创新互联
分享网址:http://6mz.cn/article/djigce.html

其他资讯