十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
小编给大家分享一下Python怎么使用numpy产生正态分布随机数的向量或矩阵操作示例,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
创新新互联,凭借十余年的网站建设、网站制作经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有千余家案例。做网站建设,选成都创新互联。具体如下:
简单来说,正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到。如下代码,可以得到满足一维和二维正态分布的样本。
示例1(一维正态分布):
# coding=utf-8 ''' 作者:采石工 来源:知乎 ''' import numpy as np from numpy.linalg import cholesky import matplotlib.pyplot as plt sampleNo = 1000; # 一维正态分布 # 下面三种方式是等效的 mu = 3 sigma = 0.1 np.random.seed(0) s = np.random.normal(mu, sigma, sampleNo ) plt.subplot(141) plt.hist(s, 30, normed=True) np.random.seed(0) s = sigma * np.random.randn(sampleNo ) + mu plt.subplot(142) plt.hist(s, 30, normed=True) np.random.seed(0) s = sigma * np.random.standard_normal(sampleNo ) + mu plt.subplot(143) plt.hist(s, 30, normed=True) # 二维正态分布 mu = np.array([[1, 5]]) Sigma = np.array([[1, 0.5], [1.5, 3]]) R = cholesky(Sigma) s = np.dot(np.random.randn(sampleNo, 2), R) + mu plt.subplot(144) # 注意绘制的是散点图,而不是直方图 plt.plot(s[:,0],s[:,1],'+') plt.show()
运行结果:
示例2(正态分布):
#-*- coding:utf-8 -*- # Python实现正态分布 # 绘制正态分布概率密度函数 import numpy as np import matplotlib.pyplot as plt import math u = 0 # 均值μ u01 = -2 sig = math.sqrt(0.2) # 标准差δ x = np.linspace(u - 3*sig, u + 3*sig, 50) y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig) print x print "="*20 print y_sig plt.plot(x, y_sig, "r-", linewidth=2) plt.grid(True) plt.show()
运行结果:
以上是“Python怎么使用numpy产生正态分布随机数的向量或矩阵操作示例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!