快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Hadoop系列(二)——集群资源管理器YARN-创新互联

一、hadoop yarn 简介

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。

公司主营业务:网站设计制作、成都做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联推出贵定免费做网站回馈大家。

二、YARN架构

Hadoop 系列(二)—— 集群资源管理器 YARN

1. ResourceManager

ResourceManager 通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。ResourceManager 负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。

2. NodeManager

NodeManager 是 YARN 集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下:

  • 启动时向 ResourceManager 注册并定时发送心跳消息,等待 ResourceManager 的指令;
  • 维护 Container 的生命周期,监控 Container 的资源使用情况;
  • 管理任务运行时的相关依赖,根据 ApplicationMaster 的需要,在启动 Container 之前将需要的程序及其依赖拷贝到本地。

3. ApplicationMaster

在用户提交一个应用程序时,YARN 会启动一个轻量级的进程 ApplicationMasterApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:

  • 根据应用的运行状态来决定动态计算资源需求;
  • ResourceManager 申请资源,监控申请的资源的使用情况;
  • 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
  • 负责任务的容错。

4. Contain

Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用 Container 表示的。YARN 会为每个任务分配一个 Container,该任务只能使用该 Container 中描述的资源。ApplicationMaster 可在 Container 内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。

三、YARN工作原理简述

  1. Client 提交作业到 YARN 上;

  2. Resource Manager 选择一个 Node Manager,启动一个 Container 并运行 Application Master 实例;

  3. Application Master 根据实际需要向 Resource Manager 请求更多的 Container 资源(如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务);

  4. Application Master 通过获取到的 Container 资源执行分布式计算。

四、YARN工作原理详述

Hadoop 系列(二)—— 集群资源管理器 YARN

1. 作业提交

client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业 (第 1 步) 。新的作业 ID(应用 ID) 由资源管理器分配 (第 2 步)。作业的 client 核实作业的输出, 计算输入的 split, 将作业的资源 (包括 Jar 包,配置文件, split 信息) 拷贝给 HDFS(第 3 步)。 最后, 通过调用资源管理器的 submitApplication() 来提交作业 (第 4 步)。

2. 作业初始化

当资源管理器收到 submitApplciation() 的请求时, 就将该请求发给调度器 (scheduler), 调度器分配 container, 然后资源管理器在该 container 内启动应用管理器进程, 由节点管理器监控 (第 5 步)。

MapReduce 作业的应用管理器是一个主类为 MRAppMaster 的 Java 应用,其通过创造一些 bookkeeping 对象来监控作业的进度, 得到任务的进度和完成报告 (第 6 步)。然后其通过分布式文件系统得到由客户端计算好的输入 split(第 7 步),然后为每个输入 split 创建一个 map 任务, 根据 mapreduce.job.reduces 创建 reduce 任务对象。

3. 任务分配

如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务。

如果不是小作业, 那么应用管理器向资源管理器请求 container 来运行所有的 map 和 reduce 任务 (第 8 步)。这些请求是通过心跳来传输的, 包括每个 map 任务的数据位置,比如存放输入 split 的主机名和机架 (rack),调度器利用这些信息来调度任务,尽量将任务分配给存储数据的节点, 或者分配给和存放输入 split 的节点相同机架的节点。

4. 任务运行

当一个任务由资源管理器的调度器分配给一个 container 后,应用管理器通过联系节点管理器来启动 container(第 9 步)。任务由一个主类为 YarnChild 的 Java 应用执行, 在运行任务之前首先本地化任务需要的资源,比如作业配置,JAR 文件, 以及分布式缓存的所有文件 (第 10 步。 最后, 运行 map 或 reduce 任务 (第 11 步)。

YarnChild 运行在一个专用的 JVM 中, 但是 YARN 不支持 JVM 重用。

5. 进度和状态更新

YARN 中的任务将其进度和状态 (包括 counter) 返回给应用管理器, 客户端每秒 (通 mapreduce.client.progressmonitor.pollinterval 设置) 向应用管理器请求进度更新, 展示给用户。

6. 作业完成

除了向应用管理器请求作业进度外, 客户端每 5 分钟都会通过调用 waitForCompletion() 来检查作业是否完成,时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 container 会清理工作状态, OutputCommiter 的作业清理方法也会被调用。作业的信息会被作业历史服务器存储以备之后用户核查。

五、提交作业到YARN上运行

这里以提交 Hadoop Examples 中计算 Pi 的 MApReduce 程序为例,相关 Jar 包在 Hadoop 安装目录的 share/hadoop/mapreduce 目录下:

# 提交格式: hadoop jar jar包路径 主类名称 主类参数
# hadoop jar hadoop-mapreduce-examples-2.6.0-cdh6.15.2.jar pi 3 3

参考资料

  1. 初步掌握 Yarn 的架构及原理

  2. Apache Hadoop 2.9.2 > Apache Hadoop YARN

更多大数据系列文章可以参见 GitHub 开源项目大数据入门指南

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前名称:Hadoop系列(二)——集群资源管理器YARN-创新互联
地址分享:http://6mz.cn/article/diepci.html

其他资讯