十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
_Complex关键字可以提供比较方便的复数运算,例如:
“只有客户发展了,才有我们的生存与发展!”这是创新互联建站的服务宗旨!把网站当作互联网产品,产品思维更注重全局思维、需求分析和迭代思维,在网站建设中就是为了建设一个不仅审美在线,而且实用性极高的网站。创新互联对成都网站建设、网站设计、网站制作、网站开发、网页设计、网站优化、网络推广、探索永无止境。
#include complex.h
double imaginary z=5.3I
注意事项:
1. 每个程序中一定包含main()函数,尽管C语言中对函数命名没有限制。
2. printf函数永远不会自动换行,只能用\n来实现, 回车键进行的换行在编译中会出现错误信息。
3. 在vs2008中编译,测试需要加 system("pause");来暂停dos自动退出导致的printf无法显示。
4. 所有自定义变量必须声明才能使用。
扩展资料:
在数学中,虚数是对实数系的扩展。利用复数可以构建四维坐标系,四维坐标系是三维实数坐标系与三维虚数坐标系组合而成的。三维实数坐标系上的点与四维复数坐标系存在映射对应关系,每一个实数坐标点对应两个不同的四维坐标点。因此,虚数只有在四维坐标中才具有现实的数值意义。
我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。在此时,一点P坐标为P(a,bi),将坐标乘上i即点绕圆心逆时针旋转90度。
虚数单位“i”首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。
您好,很高兴回答您的问题。
由于没有看到其他的内容所以只能从结构上来说明相关含义。
void digdisplay()表示的是这个函数的定义,其中void表示函数不带任何的返回值,digdisplay表示的是函数名,括号中表示函数的参数,这里是空的,所以表示不带任何的返回值。
以上就是我的回答,敬请指正。
有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节。类和结构体的对齐方式相同,有两条规则
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行
下面是我收集的关于内存对齐的一篇很好的文章:
在最近的项目中,我们涉及到了“内存对齐”技术。对于大部分程序员来说,“内存对齐”对他们来说都应该是“透明的”。“内存对齐”应该是编译器的 “管辖范围”。编译器为程序中的每个“数据单元”安排在适当的位置上。但是C语言的一个特点就是太灵活,太强大,它允许你干预“内存对齐”。如果你想了解更加底层的秘密,“内存对齐”对你就不应该再透明了。
一、内存对齐的原因
大部分的参考资料都是如是说的:
1、平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2、性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。
二、对齐规则
每个特定平台上的编译器都有自己的默认“对齐系数”(也叫对齐模数)。程序员可以通过预编译命令#pragma pack(n),n=1,2,4,8,16来改变这一系数,其中的n就是你要指定的“对齐系数”。
规则:
1、数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行。
2、结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照#pragma pack指定的数值和结构(或联合)最大数据成员长度中,比较小的那个进行。
3、结合1、2颗推断:当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果。
三、试验
我们通过一系列例子的详细说明来证明这个规则吧!
我试验用的编译器包括GCC 3.4.2和VC6.0的C编译器,平台为Windows XP + Sp2。
我们将用典型的struct对齐来说明。首先我们定义一个struct:
#pragma pack(n) /* n = 1, 2, 4, 8, 16 */
struct test_t {
int a;
char b;
short c;
char d;
};
#pragma pack(n)
首先我们首先确认在试验平台上的各个类型的size,经验证两个编译器的输出均为:
sizeof(char) = 1
sizeof(short) = 2
sizeof(int) = 4
我们的试验过程如下:通过#pragma pack(n)改变“对齐系数”,然后察看sizeof(struct test_t)的值。
1、1字节对齐(#pragma pack(1))
输出结果:sizeof(struct test_t) = 8 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(1)
struct test_t {
int a; /* 长度4 1 按1对齐;起始offset=0 0%1=0;存放位置区间[0,3] */
char b; /* 长度1 = 1 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 1 按1对齐;起始offset=5 5%1=0;存放位置区间[5,6] */
char d; /* 长度1 = 1 按1对齐;起始offset=7 7%1=0;存放位置区间[7] */
};
#pragma pack()
成员总大小=8
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 1) = 1
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 8 /* 8%1=0 */ [注1]
2、2字节对齐(#pragma pack(2))
输出结果:sizeof(struct test_t) = 10 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(2)
struct test_t {
int a; /* 长度4 2 按2对齐;起始offset=0 0%2=0;存放位置区间[0,3] */
char b; /* 长度1 2 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 = 2 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 2 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 2) = 2
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 10 /* 10%2=0 */
3、4字节对齐(#pragma pack(4))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(4)
struct test_t {
int a; /* 长度4 = 4 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 4 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 4 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 4 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 4) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
4、8字节对齐(#pragma pack(8))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(8)
struct test_t {
int a; /* 长度4 8 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 8 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 8 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 8 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 8) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
5、16字节对齐(#pragma pack(16))
输出结果:sizeof(struct test_t) = 12 [两个编译器输出一致]
分析过程:
1) 成员数据对齐
#pragma pack(16)
struct test_t {
int a; /* 长度4 16 按4对齐;起始offset=0 0%4=0;存放位置区间[0,3] */
char b; /* 长度1 16 按1对齐;起始offset=4 4%1=0;存放位置区间[4] */
short c; /* 长度2 16 按2对齐;起始offset=6 6%2=0;存放位置区间[6,7] */
char d; /* 长度1 16 按1对齐;起始offset=8 8%1=0;存放位置区间[8] */
};
#pragma pack()
成员总大小=9
2) 整体对齐
整体对齐系数 = min((max(int,short,char), 16) = 4
整体大小(size)=$(成员总大小) 按 $(整体对齐系数) 圆整 = 12 /* 12%4=0 */
四、结论
8字节和16字节对齐试验证明了“规则”的第3点:“当#pragma pack的n值等于或超过所有数据成员长度的时候,这个n值的大小将不产生任何效果”。另外内存对齐是个很复杂的东西,上面所说的在有些时候也可能不正确。呵呵^_^
[注1]
什么是“圆整”?
举例说明:如上面的8字节对齐中的“整体对齐”,整体大小=9 按 4 圆整 = 12
圆整的过程:从9开始每次加一,看是否能被4整除,这里9,10,11均不能被4整除,到12时可以,则圆整结束。