十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
/**
十年的东营区网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。营销型网站的优势是能够根据用户设备显示端的尺寸不同,自动调整东营区建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。成都创新互联公司从事“东营区网站设计”,“东营区网站推广”以来,每个客户项目都认真落实执行。
* [Tree2.java] Create on 2008-10-20 下午03:03:24
* Copyright (c) 2008 by iTrusChina.
*/
/**
* @author WangXuanmin
* @version 0.10
*/
public class Tree2Bef {
private StringBuffer bef=new StringBuffer();
//传入中序遍历和后序遍历,返回前序遍历字串
public String getBef(String mid, String beh) {
//若节点存在则向bef中添加该节点,继续查询该节点的左子树和右子树
if (root(mid, beh) != -1) {
int rootindex=root(mid, beh);
char root=mid.charAt(rootindex);
bef.append(root);
System.out.println(bef.toString());
String mleft, mright;
mleft = mid.substring(0,rootindex);
mright = mid.substring(rootindex+1);
getBef(mleft,beh);
getBef(mright,beh);
}
//所有节点查询完毕,返回前序遍历值
return bef.toString();
}
//从中序遍历中根据后序遍历查找节点索引值index
private int root(String mid, String beh) {
char[] midc = mid.toCharArray();
char[] behc = beh.toCharArray();
for (int i = behc.length-1; i -1; i--) {
for (int j = 0; j midc.length; j++) {
if (behc[i] == midc[j])
return j;
}
}
return -1;
}
public static void main(String[] args) {
Tree2Bef tree=new Tree2Bef();
String mid="84925163A7B";
String bef="894526AB731";
System.out.println(tree.getBef(mid,bef));
}
}
树结构如图:
1
|-------|
2 3
|---| |---|
4 5 6 7
|-| |-|
8 9 A B
二叉树的相关操作,包括创建,中序、先序、后序(递归和非递归),其中重点的是java在先序创建二叉树和后序非递归遍历的的实现。
package com.algorithm.tree;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.concurrent.LinkedBlockingQueue;
public class Tree {
private Node root;
public Tree() {
}
public Tree(Node root) {
this.root = root;
}
//创建二叉树
public void buildTree() {
Scanner scn = null;
try {
scn = new Scanner(new File("input.txt"));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
root = createTree(root,scn);
}
//先序遍历创建二叉树
private Node createTree(Node node,Scanner scn) {
String temp = scn.next();
if (temp.trim().equals("#")) {
return null;
} else {
node = new Node((T)temp);
node.setLeft(createTree(node.getLeft(), scn));
node.setRight(createTree(node.getRight(), scn));
return node;
}
}
//中序遍历(递归)
public void inOrderTraverse() {
inOrderTraverse(root);
}
public void inOrderTraverse(Node node) {
if (node != null) {
inOrderTraverse(node.getLeft());
System.out.println(node.getValue());
inOrderTraverse(node.getRight());
}
}
//中序遍历(非递归)
public void nrInOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
System.out.println(node.getValue());
node = node.getRight();
}
}
//先序遍历(递归)
public void preOrderTraverse() {
preOrderTraverse(root);
}
public void preOrderTraverse(Node node) {
if (node != null) {
System.out.println(node.getValue());
preOrderTraverse(node.getLeft());
preOrderTraverse(node.getRight());
}
}
//先序遍历(非递归)
public void nrPreOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
while (node != null || !stack.isEmpty()) {
while (node != null) {
System.out.println(node.getValue());
stack.push(node);
node = node.getLeft();
}
node = stack.pop();
node = node.getRight();
}
}
//后序遍历(递归)
public void postOrderTraverse() {
postOrderTraverse(root);
}
public void postOrderTraverse(Node node) {
if (node != null) {
postOrderTraverse(node.getLeft());
postOrderTraverse(node.getRight());
System.out.println(node.getValue());
}
}
//后续遍历(非递归)
public void nrPostOrderTraverse() {
StackNode stack = new StackNode();
Node node = root;
Node preNode = null;//表示最近一次访问的节点
while (node != null || !stack.isEmpty()) {
while (node != null) {
stack.push(node);
node = node.getLeft();
}
node = stack.peek();
if (node.getRight() == null || node.getRight() == preNode) {
System.out.println(node.getValue());
node = stack.pop();
preNode = node;
node = null;
} else {
node = node.getRight();
}
}
}
//按层次遍历
public void levelTraverse() {
levelTraverse(root);
}
public void levelTraverse(Node node) {
QueueNode queue = new LinkedBlockingQueueNode();
queue.add(node);
while (!queue.isEmpty()) {
Node temp = queue.poll();
if (temp != null) {
System.out.println(temp.getValue());
queue.add(temp.getLeft());
queue.add(temp.getRight());
}
}
}
}
//树的节点
class Node {
private Node left;
private Node right;
private T value;
public Node() {
}
public Node(Node left,Node right,T value) {
this.left = left;
this.right = right;
this.value = value;
}
public Node(T value) {
this(null,null,value);
}
public Node getLeft() {
return left;
}
public void setLeft(Node left) {
this.left = left;
}
public Node getRight() {
return right;
}
public void setRight(Node right) {
this.right = right;
}
public T getValue() {
return value;
}
public void setValue(T value) {
this.value = value;
}
}
测试代码:
package com.algorithm.tree;
public class TreeTest {
/**
* @param args
*/
public static void main(String[] args) {
Tree tree = new Tree();
tree.buildTree();
System.out.println("中序遍历");
tree.inOrderTraverse();
tree.nrInOrderTraverse();
System.out.println("后续遍历");
//tree.nrPostOrderTraverse();
tree.postOrderTraverse();
tree.nrPostOrderTraverse();
System.out.println("先序遍历");
tree.preOrderTraverse();
tree.nrPreOrderTraverse();
//
}
}
做了很多年的程序员,觉得什么树的设计并不是非常实用。二叉树有顺序存储,当一个insert大量同时顺序自增插入的时候,树就会失去平衡。树的一方为了不让塌陷,会增大树的高度。性能会非常不好。以上是题外话。分析需求在写代码。
import java.util.List;
import java.util.LinkedList;
public class Bintrees {
private int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9};
private static ListNode nodeList = null;
private static class Node {
Node leftChild;
Node rightChild;
int data;
Node(int newData) {
leftChild = null;
rightChild = null;
data = newData;
}
}
// 创建二叉树
public void createBintree() {
nodeList = new LinkedListNode();
// 将数组的值转换为node
for (int nodeIndex = 0; nodeIndex array.length; nodeIndex++) {
nodeList.add(new Node(array[nodeIndex]));
}
// 对除最后一个父节点按照父节点和孩子节点的数字关系建立二叉树
for (int parentIndex = 0; parentIndex array.length / 2 - 1; parentIndex++) {
nodeList.get(parentIndex).leftChild = nodeList.get(parentIndex * 2 + 1);
nodeList.get(parentIndex).rightChild = nodeList.get(parentIndex * 2 + 2);
}
// 最后一个父节点
int lastParentIndex = array.length / 2 - 1;
// 左孩子
nodeList.get(lastParentIndex).leftChild = nodeList.get(lastParentIndex * 2 + 1);
// 如果为奇数,建立右孩子
if (array.length % 2 == 1) {
nodeList.get(lastParentIndex).rightChild = nodeList.get(lastParentIndex * 2 + 2);
}
}
// 前序遍历
public static void preOrderTraverse(Node node) {
if (node == null) {
return;
}
System.out.print(node.data + " ");
preOrderTraverse(node.leftChild);
preOrderTraverse(node.rightChild);
}
// 中序遍历
public static void inOrderTraverse(Node node) {
if (node == null) {
return;
}
inOrderTraverse(node.leftChild);
System.out.print(node.data + " ");
inOrderTraverse(node.rightChild);
}
// 后序遍历
public static void postOrderTraverse(Node node) {
if (node == null) {
return;
}
postOrderTraverse(node.leftChild);
postOrderTraverse(node.rightChild);
System.out.print(node.data + " ");
}
public static void main(String[] args) {
Bintrees binTree = new Bintrees();
binTree.createBintree();
Node root = nodeList.get(0);
System.out.println("前序遍历:");
preOrderTraverse(root);
System.out.println();
System.out.println("中序遍历:");
inOrderTraverse(root);
System.out.println();
System.out.println("后序遍历:");
postOrderTraverse(root);
}
}
import java.util.ArrayList;
// 树的一个节点
class TreeNode {
Object _value = null; // 他的值
TreeNode _parent = null; // 他的父节点,根节点没有PARENT
ArrayList _childList = new ArrayList(); // 他的孩子节点
public TreeNode( Object value, TreeNode parent ){
this._parent = parent;
this._value = value;
}
public TreeNode getParent(){
return _parent;
}
public String toString() {
return _value.toString();
}
}
public class Tree {
// 给出宽度优先遍历的值数组,构建出一棵多叉树
// null 值表示一个层次的结束
// "|" 表示一个层次中一个父亲节点的孩子输入结束
// 如:给定下面的值数组:
// { "root", null, "left", "right", null }
// 则构建出一个根节点,带有两个孩子("left","right")的树
public Tree( Object[] values ){
// 创建根
_root = new TreeNode( values[0], null );
// 创建下面的子节点
TreeNode currentParent = _root; // 用于待创建节点的父亲
//TreeNode nextParent = null;
int currentChildIndex = 0; // 表示 currentParent 是他的父亲的第几个儿子
//TreeNode lastNode = null; // 最后一个创建出来的TreeNode,用于找到他的父亲
for ( int i = 2; i values.length; i++ ){
// 如果null ,表示下一个节点的父亲是当前节点的父亲的第一个孩子节点
if ( values[i] == null ){
currentParent = (TreeNode)currentParent._childList.get(0);
currentChildIndex = 0;
continue;
}
// 表示一个父节点的所有孩子输入完毕
if ( values[i].equals("|") ){
if ( currentChildIndex+1 currentParent._childList.size() ){
currentChildIndex++;
currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);
}
continue;
}
TreeNode child = createChildNode( currentParent, values[i] );
}
}
TreeNode _root = null;
public TreeNode getRoot(){
return _root;
}
/**
// 按宽度优先遍历,打印出parent子树所有的节点
private void printSteps( TreeNode parent, int currentDepth ){
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
System.out.println(currentDepth+":"+child);
}
if ( parent._childList.size() != 0 ) System.out.println(""+null);// 为了避免叶子节点也会打印null
//打印 parent 同层的节点的孩子
if ( parent._parent != null ){ // 不是root
int i = 1;
while ( i parent._parent._childList.size() ){// parent 的父亲还有孩子
TreeNode current = (TreeNode)parent._parent._childList.get(i);
printSteps( current, currentDepth );
i++;
}
}
// 递归调用,打印所有节点
for ( int i = 0; i parent._childList.size(); i++ ){
TreeNode child = (TreeNode)parent._childList.get(i);
printSteps( child, currentDepth+1 );
}
}
// 按宽度优先遍历,打印出parent子树所有的节点
public void printSteps(){
System.out.println(""+_root);
System.out.println(""+null);
printSteps(_root, 1 );
}**/
// 将给定的值做为 parent 的孩子,构建节点
private TreeNode createChildNode( TreeNode parent, Object value ){
TreeNode child = new TreeNode( value , parent );
parent._childList.add( child );
return child;
}
public static void main(String[] args) {
Tree tree = new Tree( new Object[]{ "root", null,
"left", "right", null,
"l1","l2","l3", "|", "r1","r2",null } );
//tree.printSteps();
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );
System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );
}
}
看一下吧!这是在网上找的一个例子!看对你有没有帮助!