十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
可变在这里含义很简单 就是最终的加密结果是可变的 而非必需按标准MD 加密实现 Java类库security中的MessageDigest类就提供了MD 加密的支持 实现起来非常方便 为了实现更多效果 我们可以如下设计MD 工具类
成都创新互联公司主打移动网站、网站设计制作、做网站、网站改版、网络推广、网站维护、域名与空间、等互联网信息服务,为各行业提供服务。在技术实力的保障下,我们为客户承诺稳定,放心的服务,根据网站的内容与功能再决定采用什么样的设计。最后,要实现符合网站需求的内容、功能与设计,我们还会规划稳定安全的技术方案做保障。
Java代码
package ** ** util;
import java security MessageDigest;
/**
* 标准MD 加密方法 使用java类库的security包的MessageDigest类处理
* @author Sarin
*/
public class MD {
/**
* 获得MD 加密密码的方法
*/
public static String getMD ofStr(String origString) {
String origMD = null;
try {
MessageDigest md = MessageDigest getInstance( MD );
byte[] result = md digest(origString getBytes());
origMD = byteArray HexStr(result);
} catch (Exception e) {
e printStackTrace();
}
return origMD ;
}
/**
* 处理字节数组得到MD 密码的方法
*/
private static String byteArray HexStr(byte[] bs) {
StringBuffer *** = new StringBuffer();
for (byte b : bs) {
*** append(byte HexStr(b));
}
return *** toString();
}
/**
* 字节标准移位转十六进制方法
*/
private static String byte HexStr(byte b) {
String hexStr = null;
int n = b;
if (n ) {
//若需要自定义加密 请修改这个移位算法即可
n = b x F + ;
}
hexStr = Integer toHexString(n / ) + Integer toHexString(n % );
return hexStr toUpperCase();
}
/**
* 提供一个MD 多次加密方法
*/
public static String getMD ofStr(String origString int times) {
String md = getMD ofStr(origString);
for (int i = ; i times ; i++) {
md = getMD ofStr(md );
}
return getMD ofStr(md );
}
/**
* 密码验证方法
*/
public static boolean verifyPassword(String inputStr String MD Code) {
return getMD ofStr(inputStr) equals(MD Code);
}
/**
* 重载一个多次加密时的密码验证方法
*/
public static boolean verifyPassword(String inputStr String MD Code int times) {
return getMD ofStr(inputStr times) equals(MD Code);
}
/**
* 提供一个测试的主函数
*/
public static void main(String[] args) {
System out println( : + getMD ofStr( ));
System out println( : + getMD ofStr( ));
System out println( sarin: + getMD ofStr( sarin ));
System out println( : + getMD ofStr( ));
}
}
可以看出实现的过程非常简单 因为由java类库提供了处理支持 但是要清楚的是这种方式产生的密码不是标准的MD 码 它需要进行移位处理才能得到标准MD 码 这个程序的关键之处也在这了 怎么可变?调整移位算法不就可变了么!不进行移位 也能够得到 位的密码 这就不是标准加密了 只要加密和验证过程使用相同的算法就可以了
MD 加密还是很安全的 像CMD 那些穷举破解的只是针对标准MD 加密的结果进行的 如果自定义移位算法后 它还有效么?可以说是无解的了 所以MD 非常安全可靠
为了更可变 还提供了多次加密的方法 可以在MD 基础之上继续MD 就是对 位的第一次加密结果再MD 恩 这样去破解?没有任何意义
这样在MIS系统中使用 安全可靠 欢迎交流 希望对使用者有用
我们最后看看由MD 加密算法实现的类 那是非常庞大的
Java代码
import java lang reflect *;
/**
* **********************************************
* md 类实现了RSA Data Security Inc 在提交给IETF
* 的RFC 中的MD message digest 算法
* ***********************************************
*/
public class MD {
/* 下面这些S S 实际上是一个 * 的矩阵 在原始的C实现中是用#define 实现的
这里把它们实现成为static final是表示了只读 切能在同一个进程空间内的多个
Instance间共享*/
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final byte[] PADDING = {
};
/* 下面的三个成员是MD 计算过程中用到的 个核心数据 在原始的C实现中
被定义到MD _CTX结构中
*/
private long[] state = new long[ ]; // state (ABCD)
private long[] count = new long[ ]; // number of bits modulo ^ (l *** first)
private byte[] buffer = new byte[ ]; // input buffer
/* digestHexStr是MD 的唯一一个公共成员 是最新一次计算结果的
进制ASCII表示
*/
public String digestHexStr;
/* digest 是最新一次计算结果的 进制内部表示 表示 bit的MD 值
*/
private byte[] digest = new byte[ ];
/*
getMD ofStr是类MD 最主要的公共方法 入口参数是你想要进行MD 变换的字符串
返回的是变换完的结果 这个结果是从公共成员digestHexStr取得的.
*/
public String getMD ofStr(String inbuf) {
md Init();
md Update(inbuf getBytes() inbuf length());
md Final();
digestHexStr = ;
for (int i = ; i ; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}
// 这是MD 这个类的标准构造函数 JavaBean要求有一个public的并且没有参数的构造函数
public MD () {
md Init();
return;
}
/* md Init是一个初始化函数 初始化核心变量 装入标准的幻数 */
private void md Init() {
count[ ] = L;
count[ ] = L;
///* Load magic initialization constants
state[ ] = x L;
state[ ] = xefcdab L;
state[ ] = x badcfeL;
state[ ] = x L;
return;
}
/* F G H I 是 个基本的MD 函数 在原始的MD 的C实现中 由于它们是
简单的位运算 可能出于效率的考虑把它们实现成了宏 在java中 我们把它们
实现成了private方法 名字保持了原来C中的 */
private long F(long x long y long z) {
return (x y) | ((~x) z);
}
private long G(long x long y long z) {
return (x z) | (y (~z));
}
private long H(long x long y long z) {
return x ^ y ^ z;
}
private long I(long x long y long z) {
return y ^ (x | (~z));
}
/*
FF GG HH和II将调用F G H I进行近一步变换
FF GG HH and II transformations for rounds and
Rotation is separate from addition to prevent reputation
*/
private long FF(long a long b long c long d long x long s long ac) {
a += F(b c d) + x + ac;
a = ((int) a s) | ((int) a ( s));
a += b;
return a;
}
private long GG(long a long b long c long d long x long s long ac) {
a += G(b c d) + x + ac;
a = ((int) a s) | ((int) a ( s));
a += b;
return a;
}
private long HH(long a long b long c long d long x long s long ac) {
a += H(b c d) + x + ac;
a = ((int) a s) | ((int) a ( s));
a += b;
return a;
}
private long II(long a long b long c long d long x long s long ac) {
a += I(b c d) + x + ac;
a = ((int) a s) | ((int) a ( s));
a += b;
return a;
}
/*
md Update是MD 的主计算过程 inbuf是要变换的字节串 inputlen是长度 这个
函数由getMD ofStr调用 调用之前需要调用md init 因此把它设计成private的
*/
private void md Update(byte[] inbuf int inputLen) {
int i index partLen;
byte[] block = new byte[ ];
index = (int) (count[ ] ) x F;
// /* Update number of bits */
if ((count[ ] += (inputLen )) (inputLen ))
count[ ]++;
count[ ] += (inputLen );
partLen = index;
// Transform as many times as possible
if (inputLen = partLen) {
md Memcpy(buffer inbuf index partLen);
md Transform(buffer);
for (i = partLen; i + inputLen; i += ) {
md Memcpy(block inbuf i );
md Transform(block);
}
index = ;
} else
i = ;
///* Buffer remaining input */
md Memcpy(buffer inbuf index i inputLen i);
}
/*
md Final整理和填写输出结果
*/
private void md Final() {
byte[] bits = new byte[ ];
int index padLen;
///* Save number of bits */
Encode(bits count );
///* Pad out to mod
index = (int) (count[ ] ) x f;
padLen = (index ) ? ( index) : ( index);
md Update(PADDING padLen);
///* Append length (before padding) */
md Update(bits );
///* Store state in digest */
Encode(digest state );
}
/* md Memcpy是一个内部使用的byte数组的块拷贝函数 从input的inpos开始把len长度的
字节拷贝到output的outpos位置开始
*/
private void md Memcpy(byte[] output byte[] input int outpos int inpos int len) {
int i;
for (i = ; i len; i++)
output[outpos + i] = input[inpos + i];
}
/*
md Transform是MD 核心变换程序 有md Update调用 block是分块的原始字节
*/
private void md Transform(byte block[]) {
long a = state[ ] b = state[ ] c = state[ ] d = state[ ];
long[] x = new long[ ];
Decode(x block );
/* Round */
a = FF(a b c d x[ ] S xd aa L); /* */
d = FF(d a b c x[ ] S xe c b L); /* */
c = FF(c d a b x[ ] S x dbL); /* */
b = FF(b c d a x[ ] S xc bdceeeL); /* */
a = FF(a b c d x[ ] S xf c fafL); /* */
d = FF(d a b c x[ ] S x c aL); /* */
c = FF(c d a b x[ ] S xa L); /* */
b = FF(b c d a x[ ] S xfd L); /* */
a = FF(a b c d x[ ] S x d L); /* */
d = FF(d a b c x[ ] S x b f afL); /* */
c = FF(c d a b x[ ] S xffff bb L); /* */
b = FF(b c d a x[ ] S x cd beL); /* */
a = FF(a b c d x[ ] S x b L); /* */
d = FF(d a b c x[ ] S xfd L); /* */
c = FF(c d a b x[ ] S xa eL); /* */
b = FF(b c d a x[ ] S x b L); /* */
/* Round */
a = GG(a b c d x[ ] S xf e L); /* */
d = GG(d a b c x[ ] S xc b L); /* */
c = GG(c d a b x[ ] S x e a L); /* */
b = GG(b c d a x[ ] S xe b c aaL); /* */
a = GG(a b c d x[ ] S xd f dL); /* */
d = GG(d a b c x[ ] S x L); /* */
c = GG(c d a b x[ ] S xd a e L); /* */
b = GG(b c d a x[ ] S xe d fbc L); /* */
a = GG(a b c d x[ ] S x e cde L); /* */
d = GG(d a b c x[ ] S xc d L); /* */
c = GG(c d a b x[ ] S xf d d L); /* */
b = GG(b c d a x[ ] S x a edL); /* */
a = GG(a b c d x[ ] S xa e e L); /* */
d = GG(d a b c x[ ] S xfcefa f L); /* */
c = GG(c d a b x[ ] S x f d L); /* */
b = GG(b c d a x[ ] S x d a c aL); /* */
/* Round */
a = HH(a b c d x[ ] S xfffa L); /* */
d = HH(d a b c x[ ] S x f L); /* */
c = HH(c d a b x[ ] S x d d L); /* */
b = HH(b c d a x[ ] S xfde cL); /* */
a = HH(a b c d x[ ] S xa beea L); /* */
d = HH(d a b c x[ ] S x bdecfa L); /* */
c = HH(c d a b x[ ] S xf bb b L); /* */
b = HH(b c d a x[ ] S xbebfbc L); /* */
a = HH(a b c d x[ ] S x b ec L); /* */
d = HH(d a b c x[ ] S xeaa faL); /* */
c = HH(c d a b x[ ] S xd ef L); /* */
b = HH(b c d a x[ ] S x d L); /* */
a = HH(a b c d x[ ] S xd d d L); /* */
d = HH(d a b c x[ ] S xe db e L); /* */
c = HH(c d a b x[ ] S x fa cf L); /* */
b = HH(b c d a x[ ] S xc ac L); /* */
/* Round */
a = II(a b c d x[ ] S xf L); /* */
d = II(d a b c x[ ] S x aff L); /* */
c = II(c d a b x[ ] S xab a L); /* */
b = II(b c d a x[ ] S xfc a L); /* */
a = II(a b c d x[ ] S x b c L); /* */
d = II(d a b c x[ ] S x f ccc L); /* */
c = II(c d a b x[ ] S xffeff dL); /* */
b = II(b c d a x[ ] S x dd L); /* */
a = II(a b c d x[ ] S x fa e fL); /* */
d = II(d a b c x[ ] S xfe ce e L); /* */
c = II(c d a b x[ ] S xa L); /* */
b = II(b c d a x[ ] S x e a L); /* */
a = II(a b c d x[ ] S xf e L); /* */
d = II(d a b c x[ ] S xbd af L); /* */
c = II(c d a b x[ ] S x ad d bbL); /* */
b = II(b c d a x[ ] S xeb d L); /* */
state[ ] += a;
state[ ] += b;
state[ ] += c;
state[ ] += d;
}
/*Encode把long数组按顺序拆成byte数组 因为java的long类型是 bit的
只拆低 bit 以适应原始C实现的用途
*/
private void Encode(byte[] output long[] input int len) {
int i j;
for (i = j = ; j len; i++ j += ) {
output[j] = (byte) (input[i] xffL);
output[j + ] = (byte) ((input[i] ) xffL);
output[j + ] = (byte) ((input[i] ) xffL);
output[j + ] = (byte) ((input[i] ) xffL);
}
}
/*Decode把byte数组按顺序合成成long数组 因为java的long类型是 bit的
只合成低 bit 高 bit清零 以适应原始C实现的用途
*/
private void Decode(long[] output byte[] input int len) {
int i j;
for (i = j = ; j len; i++ j += )
output[i] = b iu(input[j]) | (b iu(input[j + ]) ) | (b iu(input[j + ]) )
| (b iu(input[j + ]) );
return;
}
/*
b iu是我写的一个把byte按照不考虑正负号的原则的"升位"程序 因为java没有unsigned运算
*/
public static long b iu(byte b) {
return b ? b x F + : b;
}
/*byteHEX() 用来把一个byte类型的数转换成十六进制的ASCII表示
因为java中的byte的toString无法实现这一点 我们又没有C语言中的
sprintf(outbuf % X ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { A B C D E F };
char[] ob = new char[ ];
ob[ ] = Digit[(ib ) X F];
ob[ ] = Digit[ib X F];
String s = new String(ob);
return s;
}
public static void main(String args[]) {
MD m = new MD ();
if (Array getLength(args) == ) { //如果没有参数 执行标准的Test Suite
System out println( MD Test suite: );
System out println( MD (\ \ ): + m getMD ofStr( ));
System out println( MD (\ a\ ): + m getMD ofStr( a ));
System out println( MD (\ abc\ ): + m getMD ofStr( abc ));
System out println( MD (\ \ ): + m getMD ofStr( ));
System out println( MD (\ \ ): + m getMD ofStr( ));
System out println( MD (\ message digest\ ): + m getMD ofStr( message digest ));
System out println( MD (\ abcdefghijklmnopqrstuvwxyz\ ): + m getMD ofStr( abcdefghijklmnopqrstuvwxyz ));
System out println( MD (\ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz \ ):
+ m getMD ofStr( ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz ));
} else
System out println( MD ( + args[ ] + )= + m getMD ofStr(args[ ]));
}
lishixinzhi/Article/program/Java/hx/201311/26604
可以的。推荐的是使用绿盾加密,采用的是文件透明加密模块,对平常办公使用是没有影响的。而且绿盾支持与SVN等源代码管理工具无缝结合。
如果企业内部SVN服务器采取透明模式,即加密文件是可以存放在SVN服务器上的,需要达到的效果是SVN服务器上文件密文存储。则配合天锐绿盾应用服务器安全接入系统来实现只有安装了加密客户端的Windows、Linux、MAC端才能够正常的访问公司内部的SVN服务器。
如果企业内部采用eclipse、VS等开发工具,从这些开发工具将代码直接上传到SVN服务器上时会自动解密。为了避免明文、密文混乱存放导致版本比对时出现错误等问题。因此,SVN服务器上需统一存放明文文件。则通过服务器白名单功能实现对终端电脑数据进行强制透明加密,对上传到应用服务器数据实现上传自动解密、下载自动加密。再配合天锐绿盾应用服务器安全接入系统实现只有安装了加密客户端的Windows、Linux、MAC端才能够正常的访问公司内部的SVN服务器。
赛虎信息科技始终倾力为企事业单位的信息安全、绿盾数据防泄密提供一体化顾问式解决方案,为客户提供优质的内网安全管理产品和适合多种行业的应用解决方案。
基本的单向加密算法:
BASE64 严格地说,属于编码格式,而非加密算法
MD5(Message Digest algorithm 5,信息摘要算法)
SHA(Secure Hash Algorithm,安全散列算法)
HMAC(Hash Message Authentication Code,散列消息鉴别码)
复杂的对称加密(DES、PBE)、非对称加密算法:
DES(Data Encryption Standard,数据加密算法)
PBE(Password-based encryption,基于密码验证)
RSA(算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman)
DH(Diffie-Hellman算法,密钥一致协议)
DSA(Digital Signature Algorithm,数字签名)
ECC(Elliptic Curves Cryptography,椭圆曲线密码编码学)
代码参考:
/**
* BASE64加密
*
* @param key
* @return
* @throws Exception
*/
public static String encryptBASE64(byte[] key) throws Exception {
return (new BASE64Encoder()).encodeBuffer(key);
}
/**
* MD5加密
*
* @param data
* @return
* @throws Exception
*/
public static byte[] encryptMD5(byte[] data) throws Exception {
MessageDigest md5 = MessageDigest.getInstance(KEY_MD5);
md5.update(data);
return md5.digest();
}
/**
* SHA加密
*
* @param data
* @return
* @throws Exception
*/
public static byte[] encryptSHA(byte[] data) throws Exception {
MessageDigest sha = MessageDigest.getInstance(KEY_SHA);
sha.update(data);
return sha.digest();
}
}
/**
* 初始化HMAC密钥
*
* @return
* @throws Exception
*/
public static String initMacKey() throws Exception {
KeyGenerator keyGenerator = KeyGenerator.getInstance(KEY_MAC);
SecretKey secretKey = keyGenerator.generateKey();
return encryptBASE64(secretKey.getEncoded());
}
/**
* HMAC加密
*
* @param data
* @param key
* @return
* @throws Exception
*/
public static byte[] encryptHMAC(byte[] data, String key) throws Exception {
SecretKey secretKey = new SecretKeySpec(decryptBASE64(key), KEY_MAC);
Mac mac = Mac.getInstance(secretKey.getAlgorithm());
mac.init(secretKey);
return mac.doFinal(data);
}