快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Python实现朴素贝叶斯分类器的方法详解-创新互联

本文实例讲述了Python实现朴素贝叶斯分类器的方法。分享给大家供大家参考,具体如下:

创新互联公司坚持“要么做到,要么别承诺”的工作理念,服务领域包括:做网站、成都做网站、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的大余网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

贝叶斯定理

贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

贝叶斯公式:

P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

变形得:

P(A|B)=P(B|A)*P(A)/P(B)

其中

  • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。
  • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。
  • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。
  • P(B)是B的先验概率或边缘概率,这里称作标准化常量。
  • P(B|A)/P(B)称作标准似然度。

朴素贝叶斯分类(Naive Bayes)

朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

首先定义

  • x = {a1,a2,...}为一个样本向量,a为一个特征属性
  • div = {d1 = [l1,u1],...} 特征属性的一个划分
  • class = {y1,y2,...}样本所属的类别

算法流程:

(1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

(2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

(3) 计算每个样本的p(x|y[i])

p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

样本的所有特征属性已知,所以特征属性所属的区间d已知。

可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

(4) 由贝叶斯定理得:

p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

因为分母相同,只需计算分子。

p(y[i]|x)是观测样本属于分类y[i]的概率,找出大概率对应的分类作为分类结果。

示例:

导入数据集

{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


名称栏目:Python实现朴素贝叶斯分类器的方法详解-创新互联
转载注明:http://6mz.cn/article/cspceg.html

其他资讯