快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Kubernetes1.16基于Prometheus自定义指标弹性伸缩-创新互联

HPA原理

成都创新互联公司服务项目包括富拉尔基网站建设、富拉尔基网站制作、富拉尔基网页制作以及富拉尔基网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,富拉尔基网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到富拉尔基省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

K8S弹性伸缩,指在大业务量情况下,当前容器资源如cpu,内存,自定义指标等,已超出正常设定的范围时进行的自动扩容操作,将业务负载到扩容后的容器上,降低容器压力,直到达到HPA设定的容器数量上限,当业务量降低后,实现自动缩容操作。Kubernetes 中的 Metrics Server 持续采集所有 Pod 副本的指标数据。HPA 控制器通过 Metrics Server 的 API(Heapster 的 API 或聚合 API)获取这些数据,基于用户定义的扩缩容规则进行计算,得到目标 Pod 副本数量。当目标 Pod 副本数量与当前副本数量不同时,HPA 控制器就向 Pod 的副本控制器(Deployment、RC 或 ReplicaSet)发起 scale 操作,调整 Pod 的副本数量,完成扩缩容操作。

HPA的具有扩缩容冷却周期,防止因网络抖动而造成的不必要扩缩容操作

扩容冷却时间默认值:3分钟

缩容冷却时间默认值:5分钟

可以通过调整kube-controller-manager组件启动参数设置冷却时间:

--horizontal-pod-autoscaler-downscale-delay :扩容冷却

--horizontal-pod-autoscaler-upscale-delay :缩容冷却

HPA发展初期只支持内存,cpu的自动扩缩容操作,不支持自定义指标,发展至今,已经可以通过第三方插件与Prometheus等监控服务进行交互,获取到自定义指标,并转换成apiserver能够理解的内容,供HPA进行自动化扩缩容操作。如下图

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

HPA发展历程

目前 HPA 已经支持了 autoscaling/v1、autoscaling/v2beta1和autoscaling/v2beta2  三个大版本 。

目前大多数人比较熟悉是autoscaling/v1,这个版本只支持CPU一个指标的弹性伸缩。

而autoscaling/v2beta1增加了支持自定义指标,autoscaling/v2beta2又额外增加了外部指标支持。

而产生这些变化不得不提的是Kubernetes社区对监控与监控指标的认识与转变。从早期Heapster到Metrics Server再到将指标边界进行划分,一直在丰富监控生态。

传统HPA,只针对cpu,内存进行扩缩容编写方式也很简单,可以通过yaml,也可以通过kubectl 命令行形式设定阀值。

v1版本:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

name: php-apache

namespace: default

spec:

scaleTargetRef:

  apiVersion: apps/v1

  kind: Deployment

  name: php-apache

minReplicas: 1

maxReplicas: 10

targetCPUUtilizationPercentage: 50

v2beta2版本:

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: php-apache

namespace: default

spec:

scaleTargetRef:

  apiVersion: apps/v1

  kind: Deployment

  name: php-apache

minReplicas: 1

maxReplicas: 10

metrics:

- type: Resource

  resource:

    name: cpu

    target:

      type: Utilization

      averageUtilization: 50

- type: Pods

  pods:

    metric:

      name: packets-per-second

    target:

      type: AverageValue

      averageValue: 1k

- type: Object

  object:

    metric:

      name: requests-per-second

    describedObject:

      apiVersion: networking.k8s.io/v1beta1

      kind: Ingress

      name: main-route

    target:

      type: Value

      value: 10k

- type: External

  external:

    metric:

      name: queue_messages_ready

      selector: "queue=worker_tasks"

    target:

      type: AverageValue

      averageValue: 30

metrics中的type字段有四种类型的值:Object、Pods、Resource、External。

Resource:指的是当前伸缩对象下的pod的cpu和memory指标,只支持Utilization和AverageValue类型的目标值。

Object:指的是指定k8s内部对象的指标,数据需要第三方adapter提供,只支持Value和AverageValue类型的目标值。

Pods:指的是伸缩对象Pods的指标,数据需要第三方的adapter提供,只允许AverageValue类型的目标值。

External:指的是k8s外部的指标,数据同样需要第三方的adapter提供,只支持Value和AverageValue类型的目标值。

基于Prometheus自定义指标缩放

1.部署Prometheus

参考我之前的博客部署即可

2.部署Prometheus Adapter

但是prometheus采集到的metrics并不能直接给k8s用,因为两者数据格式不兼容,还需要另外一个组件(k8s-prometheus-adpater),将prometheus的metrics 数据格式转换成k8s API接口能识别的格式,转换以后,因为是自定义    API,所以还需要用Kubernetes aggregator在主APIServer中注册,以便直接通过/apis/来访问。

直接使用Helm Charts安装

    

 # wget https://get.helm.sh/helm-v3.0.0-linux-amd64.tar.gz

 # tar zxvf helm-v3.0.0-linux-amd64.tar.gz 

 # mv linux-amd64/helm /usr/bin/

 # helm repo add stable http://mirror.azure.cn/kubernetes/charts

 # helm repo update

 # helm repo list

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

# helm install prometheus-adapter stable/prometheus-adapter --namespace kube-system --set prometheus.url=http://prometheus.kube-system,prometheus.port=9090

# helm list -n kube-system

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

 确保适配器adapter注册到apiserver

# kubectl get apiservices |grep custom 

 Kubernetes1.16基于Prometheus自定义指标弹性伸缩

# kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1"

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

3.创建metrics deployment

容器需要暴露出让prometheus获取数据的端口,metrics路径,需要和开发商量好,服务暴露在外的需要监控的指标放在/metrics路径下

注意:镜像为私人镜像,需要实验的话,需要进行替换

apiVersion: apps/v1

kind: Deployment

metadata:

labels:

  app: metrics-app

name: metrics-app

spec:

replicas: 3

selector:

  matchLabels:

    app: metrics-app

template:

  metadata:

    labels:

      app: metrics-app

    annotations:

      prometheus.io/scrape: "true"

      prometheus.io/port: "80"

      prometheus.io/path: "/metrics"

  spec:

    containers:

    - image: 172.30.0.109/metrics-app

      name: metrics-app

      ports:

      - name: web

        containerPort: 80

      resources:

        requests:

          cpu: 200m

          memory: 256Mi

      readinessProbe:

        httpGet:

          path: /

          port: 80

        initialDelaySeconds: 3

        periodSeconds: 5

      livenessProbe:

        httpGet:

          path: /

          port: 80

        initialDelaySeconds: 3

        periodSeconds: 5

---

apiVersion: v1

kind: Service

metadata:

name: metrics-app

labels:

  app: metrics-app

spec:

ports:

- name: web

  port: 80

  targetPort: 80

selector:

  app: metrics-app    

访问容器/metrics路径,得到总共http访问量,经过prometheus指标转换为QPS

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

4.创建HPA规则

针对容器QPS进行扩缩容操作,Pods类型只支持averageValue,deployment大扩容数设为10。

HPA yaml:

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: metrics-app-hpa 

namespace: default

spec:

scaleTargetRef:

  apiVersion: apps/v1

  kind: Deployment

  name: metrics-app

minReplicas: 1

maxReplicas: 10

metrics:

- type: Pods

  pods:

    metric:

      name: http_requests_per_second

    target:

      type: AverageValue

      averageValue: 800m   # 800m 即0.8个/秒

配置好HPA后,hpa还不能获取到http_requests_per_second的数据,kubetcl get hpa看到的获取指标是unknown,需要在prometheus adapter适配器中配置http_requests_per_second

相当于白名单,去获取prometheus中的指标数据。

修改prometheus adapter configmap

# kubectl edit cm -n kube-system prometheus-adapter

新增:

- seriesQuery: 'http_requests_total{kubernetes_namespace!="",kubernetes_pod_name!=""}'

resources:

overrides:

kubernetes_namespace: {resource: "namespace"}

kubernetes_pod_name: {resource: "pod"}

name:

matches: "^(.*)_total"

as: "${1}_per_second"

metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)'

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

这里主要是利用promSQL的形式通过将http_requests_total转换成一个区间的平均访问量,如上两分钟,求容器所有的和,即为QPS

注意:将/metrics中的http_requests_total名称替换为http_requests_per_second,HPA根据http_requests_per_second去获取指标数据进行扩缩容操作

prometheus-adapter配置修改后,需要重启容器加载新的配置

到这一步,指标已经获取到了

# kubectl get hpa

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

5.测试HPA

进行压测

# yum install -y httpd-tools

使用ab命令对metrics-app service进行压力测试

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

查看HPA,指标数据已经打满,deployment下的容器已经扩容到了10个,等压力测试结束,就会自动缩容

Kubernetes1.16基于Prometheus自定义指标弹性伸缩

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文名称:Kubernetes1.16基于Prometheus自定义指标弹性伸缩-创新互联
当前网址:http://6mz.cn/article/ceiddi.html

其他资讯