十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
不懂keras中自定义二分类任务评价指标metrics的用法?其实想解决这个问题也不难,下面让小编带着大家一起学习怎么去解决,希望大家阅读完这篇文章后大所收获。
成都创新互联公司是一家集网站建设,宁河企业网站建设,宁河品牌网站建设,网站定制,宁河网站建设报价,网络营销,网络优化,宁河网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标。
keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出。
y_true:数据集真实值组成的一阶张量。
y_pred:数据集输出值组成的一阶张量。
tf.round()可对张量四舍五入,因此tf.round(y_pred)即是预测值张量。
1-tf.round(y_pred)即是预测值张量取反。
1-y_true即是真实值张量取反。
tf.reduce_sum()可对张量求和。
由此可以根据定义构建出四个基础指标TP、TN、FP、FN,然后进一步构建出进阶指标precision、recall、F1score,最后在编译阶段引用上述自定义评价指标即可。
keras中自定义二分类任务常用评价指标及其引用的代码如下
import tensorflow as tf #精确率评价指标 def metric_precision(y_true,y_pred): TP=tf.reduce_sum(y_true*tf.round(y_pred)) TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred))) FP=tf.reduce_sum((1-y_true)*tf.round(y_pred)) FN=tf.reduce_sum(y_true*(1-tf.round(y_pred))) precision=TP/(TP+FP) return precision #召回率评价指标 def metric_recall(y_true,y_pred): TP=tf.reduce_sum(y_true*tf.round(y_pred)) TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred))) FP=tf.reduce_sum((1-y_true)*tf.round(y_pred)) FN=tf.reduce_sum(y_true*(1-tf.round(y_pred))) recall=TP/(TP+FN) return recall #F1-score评价指标 def metric_F1score(y_true,y_pred): TP=tf.reduce_sum(y_true*tf.round(y_pred)) TN=tf.reduce_sum((1-y_true)*(1-tf.round(y_pred))) FP=tf.reduce_sum((1-y_true)*tf.round(y_pred)) FN=tf.reduce_sum(y_true*(1-tf.round(y_pred))) precision=TP/(TP+FP) recall=TP/(TP+FN) F1score=2*precision*recall/(precision+recall) return F1score #编译阶段引用自定义评价指标示例 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy', metric_precision, metric_recall, metric_F1score])
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。