十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
这篇文章给大家介绍利用Python怎么将pdf表格导入到excel,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
成都创新互联服务项目包括晋安网站建设、晋安网站制作、晋安网页制作以及晋安网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,晋安网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到晋安省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!pdf 文件的表格的数据可以复制,但是这是一项非常繁琐的事情。所以我首先考虑的是,Python 可否帮助我们高效且规范地读取 pdf 中的表格数据。所以一顿的检索,发现了一个比较优质处理 pdf 的库:pdfplumber,当然这个库需要大家 pip install pdfplumber 去进行安装。
导入 pdfplumber 库
通过 pdfplumber.open() 函数 获取 mt2018.pdf 文件对象
通过该 对象.pages 获取 pdf 每页的对象,截取我们需要的页对象即可
通过 页对象.extract_tables() 获取表格数据(若需要获取文本:页对象.extract_text())
代码实现:
import pdfplumber # 获取 pdf 文件对象 pdf_mt = pdfplumber.open("mt2018.pdf") # 因为我需要获取的资产负债表在 51-53页 但是索引从0开始 所以切片取 50-52即可 for pdf_pg in pdf_mt.pages[50:53]: # 只提取当前页表格数据 print(pdf_pg.extract_tables()) -------------------------------------------------------------------------- 结果比较多,截取一部分: [[['项目', '附注', '期末余额', '期初余额'], ['流动资产:', '', '', ''], ['货币资金', '1', '112,074,791,420.06', '87,868,869,913.34'], ['结算备付金', '', '', ''], ['拆出资金', '', '', ''], ['以公允价值计量且其变动计入当\n期损益的金融资产', '', '', ''], ['衍生金融资产', '', '', ''], ['应收票据及应收账款', '2', '563,739,710.00', '1,221,706,039.00']]]
我们发现,返回的数据集是一个三维的列表。那么在我们平时处理的 excel 表格数据(行与列)都是二维的数据。那么,这多出的一维是什么呢?其实就是我们的夜[页]~ 再来一个循环取出二维数据进行保存即可
for pdf_pg in pdf_mt.pages[50:53]: for pdf_tb in pdf_pg.extract_tables(): print(pdf_tb) ------------------------------------------------------------------------------ 结果比较多,截取一部分: [['项目', '附注', '期末余额', '期初余额'], ['流动资产:', '', '', ''], ['货币资金', '1', '112,074,791,420.06', '87,868,869,913.34'], ['结算备付金', '', '', ''], ['拆出资金', '', '', ''], ['以公允价值计量且其变动计入当\n期损益的金融资产', '', '', ''], ['衍生金融资产', '', '', ''], ['应收票据及应收账款', '2', '563,739,710.00', '1,221,706,039.00']]
但是,真的那么简单吗?这时,我们就需要细品我们的 pdf 了,如下图
我们发现,一张完整的资产负债表分布在多页上。也就是说,每一页的里面的表格数据都是一个三维的列表,所以我们保存数据的时候,需要让其有共同的表头(列索引),并且进行拼接。
那必须就要强推我们的 pandas 了,pandas.DataFrame() 非常完美的创建表格式的二维数组,以及指定列索引(表头)。包括可以直接 使用 df.append() 进行共同表头数据的堆叠拼接。
import pdfplumber import pandas as pd import numpy as np # 创建仅有表头的 dataframe 数组 pdf_df = pd.DataFrame(columns=['项目', '附注', '期末余额', '期初余额']) # 获取 pdf 文件对象 pdf_mt = pdfplumber.open("mt2018.pdf") # 因为我需要获取的资产负债表在 51-53页 但是索引从0开始 所以切片取 50-52即可 for pdf_pg in pdf_mt.pages[50:53]: # 获取二维列表 for pdf_tb in pdf_pg.extract_tables(): # 将其拼接 pdf_df = pdf_df.append(pd.DataFrame(np.array(pdf_tb),columns=['项目', '附注', '期末余额', '期初余额'])) # 显示后五条 pdf_df.tail()
dataframe数据输出如下:
pdf 53页如下:
实际上,大家也发现,我们获取的最后一页的数据还有一部分是另一个表的,所以我们需要将其去除,并且有序的设置行索引,再保存到 csv 文件中。
# 去除后三行 pdf_df = pdf_df.iloc[:-3,:] # 重置索引 pdf_df = pdf_df.reset_index(drop=True) # 保存到 csv 文件中 pdf_df.to_csv("mt_2018.csv")
关于利用Python怎么将pdf表格导入到excel就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。