快上网专注成都网站设计 成都网站制作 成都网站建设
成都网站建设公司服务热线:028-86922220

网站建设知识

十年网站开发经验 + 多家企业客户 + 靠谱的建站团队

量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决

Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)-创新互联

Tensorflow二维、三维、四维矩阵运算(矩阵相乘,点乘,行/列累加)

成都创新互联公司专注于企业成都营销网站建设、网站重做改版、遂平网站定制设计、自适应品牌网站建设、HTML5商城网站建设、集团公司官网建设、外贸营销网站建设、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为遂平等各大城市提供网站开发制作服务。

1. 矩阵相乘 Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)

根据矩阵相乘的匹配原则,左乘矩阵的列数要等于右乘矩阵的行数。

在多维(三维、四维)矩阵的相乘中,需要最后两维满足匹配原则。

可以将多维矩阵理解成:(矩阵排列,矩阵),即后两维为矩阵,前面的维度为矩阵的排列。

比如对于(2,2,4)来说,视为2个(2,4)矩阵。

对于(2,2,2,4)来说,视为2*2个(2,4)矩阵。

import tensorflow as tf
 
a_2d = tf.constant([1]*6, shape=[2, 3])
b_2d = tf.constant([2]*12, shape=[3, 4])
c_2d = tf.matmul(a_2d, b_2d)
a_3d = tf.constant([1]*12, shape=[2, 2, 3])
b_3d = tf.constant([2]*24, shape=[2, 3, 4])
c_3d = tf.matmul(a_3d, b_3d)
a_4d = tf.constant([1]*24, shape=[2, 2, 2, 3])
b_4d = tf.constant([2]*48, shape=[2, 2, 3, 4])
c_4d = tf.matmul(a_4d, b_4d)
 
with tf.Session() as sess:
 tf.global_variables_initializer().run()
 print("# {}*{}={} \n{}".
  format(a_2d.eval().shape, b_2d.eval().shape, c_2d.eval().shape, c_2d.eval()))
 print("# {}*{}={} \n{}".
  format(a_3d.eval().shape, b_3d.eval().shape, c_3d.eval().shape, c_3d.eval()))
 print("# {}*{}={} \n{}".
  format(a_4d.eval().shape, b_4d.eval().shape, c_4d.eval().shape, c_4d.eval()))

文章名称:Tensorflow矩阵运算实例(矩阵相乘,点乘,行/列累加)-创新互联
本文URL:http://6mz.cn/article/cccsse.html

其他资讯