十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
答: 在这里我的思路是利用Python函数同时接受多个参数,然后在函数的内部,它的功能是返回各输入参数对应的乘积。如下所示,可以使用*nums作为输入参数以同时接受多个参数。对应代码如下所示:
创新互联公司服务项目包括平远网站建设、平远网站制作、平远网页制作以及平远网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,平远网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到平远省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
本次例子是对1,3,5,7和9进行累乘,本次的结果为945,如下所示,计算正确。
同样地,我们也可以使用其他例子进行测试,也可以得到正确的结果。
import math
n = int(input("请输入一个正整数:"))
# 计算阶层
result = math.factorial(n)
# 输出结果
print("{}! = {}".format(n, result))
【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True。如果object不是一个给定类型的的对象, 则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。
2、连接字符串
常使用+连接两个字符串。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。
可以把类当做参数传入到函数里,在函数里进行实例化。
把类A当做参数传入get_instance_from_class。在get_instance_from_class中对A进行实例化,获得其实例,并返回。
class A:
def __init__(self):
print "I am a A instance."
def print_myself(self):
print "print myself."
def main():
def get_instance_from_class(a):
return a()
a = get_instance_from_class(A)
a.print_myself()
if __name__=="__main__":
main()
有阶乘函数,Numpy中,mat必须是2维的,但是array可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。
在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。
若a=mat([1,2,3]) 是矩阵,则 a.A 则转换成了数组,反之,a.M则转换成了矩阵。
扩展资料:
常用的Numpy运算:
取矩阵中的某一行 ss[1,:] 或该行的某两列 ss[1,0:2]
将数组转换成矩阵 randMat=mat(random.rand(4,4))
矩阵求逆 randMat.I
单位阵 eye(4)
零矩阵 zeros((x,y)) 建立x行y列的零矩阵。
最大值和最小值 a.max(),a.min() ,而a.max(0) 表示按列选取每列的最大值。最大/小元素的下标 a.argmax(),a.argmin()
#作为方法x.sum() #所有元素相加x.sum(axis=0) #按列相加x.sum(axis=1) #按行相加#作为函数sum(a,axis=0)ss.mean()
mean(a,axis=0(或1)) #按列或行求均值var(a)var(a,axis=0(或1)) #按列或行求方差。
std(a)std(a,axis=0(或1)) #按列或行求标准差ss.T或ss.transpose() #转置。
1、Python中自带的sum函数
在Python中自带的函数中,它输入的对象可以是一个可迭代对象,比方说数组、列表,在使用的时候sum最多有两个参数,如果是一个参数的情况下,那么第一个参数是可迭代的,当有两个参数时,第二个参数只能是个数。举个例子:
sum([1,2,3],2) 运行结果:8 三个元素相加之后再加2sum((1,2,3)) 运行结果:6sum({1,2,3}) 运行结果:6
2、numpy中的sum函数
这里的sum函数就是我们平时用的,同样的可以是元组、数组、列表,在数组中,可以指定维度的相加,默认情况下axis=none,sum将所有的元素相加,举个例子:
1、当sum没有参数的时候,那么会将所有的元素相加;
2、如果axis参数等于0时,则是按列相加;
举个例子:
import numpy as np b=np.array([[3,7,6],[2,4,5]])print(b.sum(axis=0))
相当于是:
[[3,7,6], [2,4,5]]
每一列对应元素相加3+2,7+4,6+5
运行结果输出:
[5 11 11]
3、当axis参数等于1时,就是按行相加,例如:
import numpy as np b=np.array([[3,7,6],[2,4,5]])print(b.sum(axis=1))
运行结果输出为:
[16 11]
在上面的实例中,就相当于是3+7+6,2+4+5,即每一行的元素分别相加。
关于如何使用Python中的sum函数?Python中sum函数的多种用法的内容就分享到这里了,希望大家可以通过对这这篇文章的学习,掌握到更多sum函数的使用方法。