十年网站开发经验 + 多家企业客户 + 靠谱的建站团队
量身定制 + 运营维护+专业推广+无忧售后,网站问题一站解决
2021-11-10
创新互联公司凭借专业的设计团队扎实的技术支持、优质高效的服务意识和丰厚的资源优势,提供专业的网站策划、网站制作、成都网站建设、网站优化、软件开发、网站改版等服务,在成都10余年的网站建设设计经验,为成都成百上千家中小型企业策划设计了网站。
列表是一种非连续的存储容器,有多个节点组成,节点通过一些变量记录彼此之间的关系
单链表和双链表就是列表的两种方法。
原理:A、B、C三个人,B懂A的电话,C懂B的电话只是单方知道号码,这样就形成了一个单链表结构。
如果C把自己的号码给B,B把自己的号码给A,因为是双方都知道对方的号码,这样就形成了一个双链表结构
如果B换号码了,他需要通知AC,把自己的号码删了,这个过程就是列表的删除操作。
在Go语言中,列表使用 container/list 包来实现,内部的实现原理是双链表,列表能够高效地进行任意位置的元素插入和删除操作。
列表初始化的两种办法
列表没有给出具体的元素类型的限制,所以列表的元素可以是任意类型的,
例如给列表中放入了一个 interface{} 类型的值,取出值后,如果要将 interface{} 转换为其他类型将会发生宕机。
双链表支持从队列前方或后方插入元素,分别对应的方法是 PushFront 和 PushBack。
列表插入函数的返回值会提供一个 *list.Element 结构,这个结构记录着列表元素的值以及与其他节点之间的关系等信息,从列表中删除元素时,需要用到这个结构进行快速删除。
遍历完也能看到最后的结果
学习地址:
1. 部署简单
Go
编译生成的是一个静态可执行文件,除了glibc外没有其他外部依赖。这让部署变得异常方便:目标机器上只需要一个基础的系统和必要的管理、监控工具,完全不需要操心应用所需的各种包、库的依赖关系,大大减轻了维护的负担。
2. 并发性好
Goroutine和channel使得编写高并发的服务端软件变得相当容易,很多情况下完全不需要考虑锁机制以及由此带来的各种问题。单个Go应用也能有效的利用多个CPU核,并行执行的性能好。
3. 良好的语言设计
从学术的角度讲Go语言其实非常平庸,不支持许多高级的语言特性;但从工程的角度讲,Go的设计是非常优秀的:规范足够简单灵活,有其他语言基础的程序员都能迅速上手。更重要的是
Go 自带完善的工具链,大大提高了团队协作的一致性。
4. 执行性能好
虽然不如 C 和 Java,但相比于其他编程语言,其执行性能还是很好的,适合编写一些瓶颈业务,内存占用也非常省。
Goroutine调度是一个很复杂的机制,下面尝试用简单的语言描述一下Goroutine调度机制,想要对其有更深入的了解可以去研读一下源码。
首先介绍一下GMP什么意思:
G ----------- goroutine: 即Go协程,每个go关键字都会创建一个协程。
M ---------- thread内核级线程,所有的G都要放在M上才能运行。
P ----------- processor处理器,调度G到M上,其维护了一个队列,存储了所有需要它来调度的G。
Goroutine 调度器P和 OS 调度器是通过 M 结合起来的,每个 M 都代表了 1 个内核线程,OS 调度器负责把内核线程分配到 CPU 的核上执行
模型图:
避免频繁的创建、销毁线程,而是对线程的复用。
1)work stealing机制
当本线程无可运行的G时,尝试从其他线程绑定的P偷取G,而不是销毁线程。
2)hand off机制
当本线程M0因为G0进行系统调用阻塞时,线程释放绑定的P,把P转移给其他空闲的线程执行。进而某个空闲的M1获取P,继续执行P队列中剩下的G。而M0由于陷入系统调用而进被阻塞,M1接替M0的工作,只要P不空闲,就可以保证充分利用CPU。M1的来源有可能是M的缓存池,也可能是新建的。当G0系统调用结束后,根据M0是否能获取到P,将会将G0做不同的处理:
如果有空闲的P,则获取一个P,继续执行G0。
如果没有空闲的P,则将G0放入全局队列,等待被其他的P调度。然后M0将进入缓存池睡眠。
如下图
GOMAXPROCS设置P的数量,最多有GOMAXPROCS个线程分布在多个CPU上同时运行
在Go中一个goroutine最多占用CPU 10ms,防止其他goroutine被饿死。
具体可以去看另一篇文章
【Golang详解】go语言调度机制 抢占式调度
当创建一个新的G之后优先加入本地队列,如果本地队列满了,会将本地队列的G移动到全局队列里面,当M执行work stealing从其他P偷不到G时,它可以从全局G队列获取G。
协程经历过程
我们创建一个协程 go func()经历过程如下图:
说明:
这里有两个存储G的队列,一个是局部调度器P的本地队列、一个是全局G队列。新创建的G会先保存在P的本地队列中,如果P的本地队列已经满了就会保存在全局的队列中;处理器本地队列是一个使用数组构成的环形链表,它最多可以存储 256 个待执行任务。
G只能运行在M中,一个M必须持有一个P,M与P是1:1的关系。M会从P的本地队列弹出一个可执行状态的G来执行,如果P的本地队列为空,就会想其他的MP组合偷取一个可执行的G来执行;
一个M调度G执行的过程是一个循环机制;会一直从本地队列或全局队列中获取G
上面说到P的个数默认等于CPU核数,每个M必须持有一个P才可以执行G,一般情况下M的个数会略大于P的个数,这多出来的M将会在G产生系统调用时发挥作用。类似线程池,Go也提供一个M的池子,需要时从池子中获取,用完放回池子,不够用时就再创建一个。
work-stealing调度算法:当M执行完了当前P的本地队列队列里的所有G后,P也不会就这么在那躺尸啥都不干,它会先尝试从全局队列队列寻找G来执行,如果全局队列为空,它会随机挑选另外一个P,从它的队列里中拿走一半的G到自己的队列中执行。
如果一切正常,调度器会以上述的那种方式顺畅地运行,但这个世界没这么美好,总有意外发生,以下分析goroutine在两种例外情况下的行为。
Go runtime会在下面的goroutine被阻塞的情况下运行另外一个goroutine:
用户态阻塞/唤醒
当goroutine因为channel操作或者network I/O而阻塞时(实际上golang已经用netpoller实现了goroutine网络I/O阻塞不会导致M被阻塞,仅阻塞G,这里仅仅是举个栗子),对应的G会被放置到某个wait队列(如channel的waitq),该G的状态由_Gruning变为_Gwaitting,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入sleep状态;当阻塞的G被另一端的G2唤醒时(比如channel的可读/写通知),G被标记为,尝试加入G2所在P的runnext(runnext是线程下一个需要执行的 Goroutine。), 然后再是P的本地队列和全局队列。
系统调用阻塞
当M执行某一个G时候如果发生了阻塞操作,M会阻塞,如果当前有一些G在执行,调度器会把这个线程M从P中摘除,然后再创建一个新的操作系统的线程(如果有空闲的线程可用就复用空闲线程)来服务于这个P。当M系统调用结束时候,这个G会尝试获取一个空闲的P执行,并放入到这个P的本地队列。如果获取不到P,那么这个线程M变成休眠状态, 加入到空闲线程中,然后这个G会被放入全局队列中。
队列轮转
可见每个P维护着一个包含G的队列,不考虑G进入系统调用或IO操作的情况下,P周期性的将G调度到M中执行,执行一小段时间,将上下文保存下来,然后将G放到队列尾部,然后从队列中重新取出一个G进行调度。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
除了每个P维护的G队列以外,还有一个全局的队列,每个P会周期性地查看全局队列中是否有G待运行并将其调度到M中执行,全局队列中G的来源,主要有从系统调用中恢复的G。之所以P会周期性地查看全局队列,也是为了防止全局队列中的G被饿死。
M0
M0是启动程序后的编号为0的主线程,这个M对应的实例会在全局变量rutime.m0中,不需要在heap上分配,M0负责执行初始化操作和启动第一个G,在之后M0就和其他的M一样了
G0
G0是每次启动一个M都会第一个创建的goroutine,G0仅用于负责调度G,G0不指向任何可执行的函数,每个M都会有一个自己的G0,在调度或系统调用时会使用G0的栈空间,全局变量的G0是M0的G0
一个G由于调度被中断,此后如何恢复?
中断的时候将寄存器里的栈信息,保存到自己的G对象里面。当再次轮到自己执行时,将自己保存的栈信息复制到寄存器里面,这样就接着上次之后运行了。
我这里只是根据自己的理解进行了简单的介绍,想要详细了解有关GMP的底层原理可以去看Go调度器 G-P-M 模型的设计者的文档或直接看源码
参考: ()
()
Go 由于不支持泛型而臭名昭著,但最近,泛型已接近成为现实。Go 团队实施了一个看起来比较稳定的设计草案,并且正以源到源翻译器原型的形式获得关注。本文讲述的是泛型的最新设计,以及如何自己尝试泛型。
例子
FIFO Stack
假设你要创建一个先进先出堆栈。没有泛型,你可能会这样实现:
type Stack []interface{}func (s Stack) Peek() interface{} {
return s[len(s)-1]
}
func (s *Stack) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack) Push(value interface{}) {
*s =
append(*s, value)
}
但是,这里存在一个问题:每当你 Peek 项时,都必须使用类型断言将其从 interface{} 转换为你需要的类型。如果你的堆栈是 *MyObject 的堆栈,则意味着很多 s.Peek().(*MyObject)这样的代码。这不仅让人眼花缭乱,而且还可能引发错误。比如忘记 * 怎么办?或者如果您输入错误的类型怎么办?s.Push(MyObject{})` 可以顺利编译,而且你可能不会发现到自己的错误,直到它影响到你的整个服务为止。
通常,使用 interface{} 是相对危险的。使用更多受限制的类型总是更安全,因为可以在编译时而不是运行时发现问题。
泛型通过允许类型具有类型参数来解决此问题:
type Stack(type T) []Tfunc (s Stack(T)) Peek() T {
return s[len(s)-1]
}
func (s *Stack(T)) Pop() {
*s = (*s)[:
len(*s)-1]
}
func (s *Stack(T)) Push(value T) {
*s =
append(*s, value)
}
这会向 Stack 添加一个类型参数,从而完全不需要 interface{}。现在,当你使用 Peek() 时,返回的值已经是原始类型,并且没有机会返回错误的值类型。这种方式更安全,更容易使用。(译注:就是看起来更丑陋,^-^)
此外,泛型代码通常更易于编译器优化,从而获得更好的性能(以二进制大小为代价)。如果我们对上面的非泛型代码和泛型代码进行基准测试,我们可以看到区别:
type MyObject struct {
X
int
}
var sink MyObjectfunc BenchmarkGo1(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek().(MyObject)
}
}
func BenchmarkGo2(b *testing.B) {
for i := 0; i b.N; i++ {
var s Stack(MyObject)
s.Push(MyObject{})
s.Push(MyObject{})
s.Pop()
sink = s.Peek()
}
}
结果:
BenchmarkGo1BenchmarkGo1-16 12837528 87.0 ns/op 48 B/op 2 allocs/opBenchmarkGo2BenchmarkGo2-16 28406479 41.9 ns/op 24 B/op 2 allocs/op
在这种情况下,我们分配更少的内存,同时泛型的速度是非泛型的两倍。
合约(Contracts)
上面的堆栈示例适用于任何类型。但是,在许多情况下,你需要编写仅适用于具有某些特征的类型的代码。例如,你可能希望堆栈要求类型实现 String() 函数
1、简单易学。
Go语言的作者本身就很懂C语言,所以同样Go语言也会有C语言的基因,所以对于程序员来说,Go语言天生就会让人很熟悉,容易上手。
2、并发性好。
Go语言天生支持并发,可以充分利用多核,轻松地使用并发。 这是Go语言最大的特点。
描述
Go的语法接近C语言,但对于变量的声明有所不同。Go支持垃圾回收功能。Go的并行模型是以东尼·霍尔的通信顺序进程(CSP)为基础,采取类似模型的其他语言包括Occam和Limbo,但它也具有Pi运算的特征,比如通道传输。
在1.8版本中开放插件(Plugin)的支持,这意味着现在能从Go中动态加载部分函数。
与C++相比,Go并不包括如枚举、异常处理、继承、泛型、断言、虚函数等功能,但增加了 切片(Slice) 型、并发、管道、垃圾回收、接口(Interface)等特性的语言级支持。
基本设计思路:
类型转换、类型断言、动态派发。iface,eface。
反射对象具有的方法:
编译优化:
内部实现:
实现 Context 接口有以下几个类型(空实现就忽略了):
互斥锁的控制逻辑:
设计思路:
(以上为写被读阻塞,下面是读被写阻塞)
总结,读写锁的设计还是非常巧妙的:
设计思路:
WaitGroup 有三个暴露的函数:
部件:
设计思路:
结构:
Once 只暴露了一个方法:
实现:
三个关键点:
细节:
让多协程任务的开始执行时间可控(按顺序或归一)。(Context 是控制结束时间)
设计思路: 通过一个锁和内置的 notifyList 队列实现,Wait() 会生成票据,并将等待协程信息加入链表中,等待控制协程中发送信号通知一个(Signal())或所有(Boardcast())等待者(内部实现是通过票据通知的)来控制协程解除阻塞。
暴露四个函数:
实现细节:
部件:
包: golang.org/x/sync/errgroup
作用:开启 func() error 函数签名的协程,在同 Group 下协程并发执行过程并收集首次 err 错误。通过 Context 的传入,还可以控制在首次 err 出现时就终止组内各协程。
设计思路:
结构:
暴露的方法:
实现细节:
注意问题:
包: "golang.org/x/sync/semaphore"
作用:排队借资源(如钱,有借有还)的一种场景。此包相当于对底层信号量的一种暴露。
设计思路:有一定数量的资源 Weight,每一个 waiter 携带一个 channel 和要借的数量 n。通过队列排队执行借贷。
结构:
暴露方法:
细节:
部件:
细节:
包: "golang.org/x/sync/singleflight"
作用:防击穿。瞬时的相同请求只调用一次,response 被所有相同请求共享。
设计思路:按请求的 key 分组(一个 *call 是一个组,用 map 映射存储组),每个组只进行一次访问,组内每个协程会获得对应结果的一个拷贝。
结构:
逻辑:
细节:
部件:
如有错误,请批评指正。